Determination of Translaminar Notch Fracture Toughness for Laminated Composites Using Brazilian Disk Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Fracture Tests on Brazilian Disk Samples
2.3. The Virtual Isotropic Material Concept (VIMC)
2.4. The MTS and the MS Criteria
2.5. Finite Element Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, A.; Palekar, S.P.; Mulani, S.B.; Kapania, R.K. Stochastic extended finite element implementation for fracture analysis of laminated composite plate with a central crack. Aerosp. Sci. Technol. 2017, 60, 131–151. [Google Scholar] [CrossRef]
- Yao, X.F.; Zhou, D.; Yeh, H.Y. Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites. Aerosp. Sci. Technol. 2008, 12, 223–230. [Google Scholar] [CrossRef]
- Pansare, A.V.; Khairkar, S.R.; Shedge, A.A.; Chhatre, S.Y.; Patil, V.R.; Nagarkar, A.A. In situ nanoparticle embedding for authentication of epoxy composites. Adv. Mater. 2018, 33, 1801523. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.K.W.; Shrestha, P.K.; Pansare, A.V.; Chakrabarti, S.; Li, S.; Chu, D.; Lowe, C.R.; Nagarkar, A.A. Density modulation of embedded nanoparticles via spatial, temporal, and chemical control elements. Adv. Mater. 2019, 50, 1901802. [Google Scholar] [CrossRef]
- Beaumont, P. The failure of fiber composites: An overview. J. Strain Anal. 1989, 24, 189–205. [Google Scholar] [CrossRef]
- Waddoups, M.E.; Eisenman, J.R.; Kaminski, B.E. Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 1971, 5, 446–451. [Google Scholar] [CrossRef]
- Backlund, J.; Aronsson, C.G. Tensile Fracture of Laminates with Holes. J. Compos. Mater. 1986, 20, 259–285. [Google Scholar] [CrossRef]
- Aronsson, C.G.; Backlund, J. Tensile fracture of laminates with cracks. J. Compos. Mater. 1986, 20, 287–307. [Google Scholar] [CrossRef]
- Eriksson, I.; Aronsson, C.G. Strength of tensile loaded graphite/epoxy laminates containing cracks, open and filled holes. J. Compos. Mater. 1990, 24, 456–482. [Google Scholar] [CrossRef]
- Whitney, J.; Nuismer, R. Stress fracture criteria for laminated composites containing stress concentration. J. Compos. Mater. 1974, 8, 253–265. [Google Scholar] [CrossRef]
- Khashaba, U.A.; Khdair, A.I. Open hole compressive elastic and strength analysis of CFRE composites for aerospace applications. Aerosp. Sci. Technol. 2017, 60, 96–107. [Google Scholar] [CrossRef]
- Tan, S.C. Laminated composites containing an elliptical opening. II. experiment and model modification. J. Compos. Mater. 1987, 21, 949–968. [Google Scholar] [CrossRef]
- Tan, S.C.; Nuismer, R.J. A theory for progressive matrix cracking in composite laminates. J. Compos. Mater. 1989, 23, 1029–1047. [Google Scholar] [CrossRef]
- Lagace, P.A. Notch sensitivity of graphite/epoxy fabric laminates. Compos. Sci. Tech. 1986, 26, 95–117. [Google Scholar] [CrossRef]
- Mar, J.W.; Lin, K.Y. Fracture mechanics correlation for tensile failure of filamentary composites with holes. J Aircr. 1977, 14, 703–704. [Google Scholar] [CrossRef]
- Mar, J.W.; Lin, K.Y. Fracture of boron/aluminum composites with discontinuities. J. Compos. Mater. 1977, 11, 405–421. [Google Scholar] [CrossRef]
- Nuismer, R.J.; Labor, J.D. Applications of the average stress failure criterion: Part I–Tension. J. Compos. Mater. 1978, 12, 238–249. [Google Scholar] [CrossRef]
- Pipes, R.B.; Wetherhold, R.C.; Gillespie, J.W. Macroscopic fracture of fibrous composites. Mater. Sci. Eng. 1980, 45, 247–253. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, D.S.; Takeda, N. Notched strength and effective crack growth in woven fabric laminates. J. Compos. Mater. 1995, 29, 982–998. [Google Scholar]
- Kim, Y.; Kim, I.; Park, J. An approximate formulation for the progressive failure analysis of a composite lattice cylindrical panel in aerospace applications. Aerosp. Sci. Technol. 2020, 106, 106212. [Google Scholar] [CrossRef]
- Naik, N.K.; Shembekar, P.S. Elastic behavior of woven fabric composites: I-lamina analysis. J. Compos. Mater. 1992, 26, 2196–2225. [Google Scholar] [CrossRef]
- Tan, S.C. A progressive failure model for composite laminates containing openings. J. Compos. Mater. 1991, 25, 536–577. [Google Scholar] [CrossRef]
- Chang, F.K.; Chang, K.Y. A progressive damage model for laminated composite containing stress concentration. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- Chang, K.Y.; Sheng, L.; Chang, F.K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loading. J. Compos. Mater. 1991, 25, 274–301. [Google Scholar] [CrossRef]
- Nguyen, B.N. Three-dimensional modeling of damage in laminated composites containing a central hole. J. Compos. Mater. 1997, 31, 1672–1693. [Google Scholar] [CrossRef]
- Lawcock, G.; Ye, L.; Mai, Y.W. Progressive damage and residual strength of a carbon fiber reinforced metal laminate. J. Compos. Mater. 1997, 31, 762–787. [Google Scholar] [CrossRef]
- Coats, T.W.; Harris, C.E. A progressive damage methodology for residual strength predictions of notched composite panels. J. Compos. Mater. 1999, 33, 2193–2224. [Google Scholar] [CrossRef] [Green Version]
- Maire, J.F.; Chaboche, J.L. A new formulation of continuum damage mechanics (CDM) for composite materials. Aerosp. Sci. Technol. 1997, 1, 247–257. [Google Scholar] [CrossRef]
- Barati, E.; Aghazadeh Mohandesi, J.; Alizadeh, Y. The effect of notch depth on J-integral and critical fracture load in plates made of functionally graded aluminum–silicone carbide composite with U-notches under bending. Mater. Des. 2010, 31, 4686–4692. [Google Scholar] [CrossRef]
- Razavi, S.M.J.; Majidi, H.R.; Berto, F.; Ayatollahi, M.R. Fracture assessment of U-notched graphite specimens by means of cohesive zone model. Procedia Struct. Integr. 2020, 26, 251–255. [Google Scholar] [CrossRef]
- Bahrami, B.; Ayatollahi, M.R.; Torabi, A.R. Predictions of fracture load, crack initiation angle, and trajectory for V-notched Brazilian disk specimens under mixed mode I/II loading with negative mode I contributions. Int. J. Damage Mech. 2018, 27, 1173–1191. [Google Scholar] [CrossRef]
- Bahrami, B.; Ayatollahi, M.R.; Torabi, A.R. In-situ brittle fracture analysis of sharp V-notched components using digital image correlation. Theor. Appl. Fract. Mech. 2020, 106, 102484. [Google Scholar] [CrossRef]
- Seweryn, A.; Łukaszewicz, A. Verification of brittle fracture criteria for elements with V-shaped notches. Eng. Fract. Mech. 2002, 69, 1487–1510. [Google Scholar] [CrossRef]
- Matvienko, Y.G.; Morozov, E.M. Calculation of the energy J-integral for bodies with notches and cracks. Int. J. Fract. 2004, 125, 249–261. [Google Scholar] [CrossRef]
- Torabi, A.R.; Pirhadi, E. Notch failure in laminated composites under opening mode: The Virtual Isotropic Material Concept. Compos. B Eng. 2019, 172, 61–75. [Google Scholar] [CrossRef]
- Sánchez, M.; Cicero, S.; Torabi, A.R.; Ayatollahi, M.R. Critical load prediction in notched E/glass–epoxy-laminated composites using the Virtual Isotropic Material Concept combined with the Average Strain Energy Density Criterion. Polymers 2021, 13, 1057. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17; Standard Test. Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM E1922-04; Standard Test. Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- Erdogan, F.; Sih, G. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. Trans. 1963, 85, 528–534. [Google Scholar] [CrossRef]
- Ritchie, R.O.; Knott, J.F.; Rice, J.R. On the relationship between critical stress and fracture toughness in mild steel. J. Mech. Phys. Solids 1973, 21, 395–410. [Google Scholar] [CrossRef]
- Seweryn, A. Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 1994, 47, 673–681. [Google Scholar] [CrossRef]
- Torabi, A.R.; Fakoor, M.; Pirhadi, E. Fracture analysis of U-notched disc-type graphite specimens under mixed mode loading. Int. J. Solids Struct. 2014, 51, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Ayatollahi, M.R.; Torabi, A.R.; Bahrami, B. Comprehensive notch shape factors for V-notched Brazilian disk specimens loaded under mixed mode I/II from pure opening mode to pure closing mode. Arch. Appl. Mech. 2017, 87, 299–313. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.; Yang, Q.; Li, Z.; Su, X. Progressive fracture analysis of the open-hole composite laminates: Experiment and simulation. Compos. Struct. 2021, 262, 113628. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Vijayarangan, S.; Naidu, A.C.B. Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites. Mater. Des. 2007, 28, 2287–2294. [Google Scholar] [CrossRef]
Unidirectional | Cross-Ply | Quasi-Isotropic | |
---|---|---|---|
σu (MPa) | 876 ± 4.0 | 498 ± 4.4 | 442 ± 5.3 |
KTL (MPa·m1/2) | 47.8 ± 1.3 | 36.5 ± 2.7 | 40.2 ± 5.3 |
E (GPa) | 46.0 | 31.1 | 34.0 |
Notch Type | Notch Radius (mm), ρ | P1 | P2 | P3 | Paverage | Standard Deviation |
---|---|---|---|---|---|---|
U-notch | 1 | 6611 | 6520 | 6860 | 6663 | 176.0 |
2 | 7050 | 7230 | 6970 | 7083 | 133.2 | |
4 | 8100 | 8430 | 8764 | 8431 | 332.0 | |
V-notch, 30° | 1 | 6530 | 6320 | 6070 | 6306 | 230.3 |
2 | 6910 | 7050 | 6840 | 6933 | 106.9 | |
4 | 7680 | 7500 | 7800 | 7660 | 151.0 | |
V-notch, 60° | 1 | 5420 | 5210 | 5100 | 5243 | 162.6 |
2 | 5870 | 5900 | 5770 | 5846 | 68.1 | |
4 | 6620 | 6450 | 6920 | 6663 | 238.0 | |
V-notch, 90° | 1 | 4150 | 4810 | 3940 | 4300 | 454.0 |
2 | 4690 | 5170 | 4670 | 4843 | 283.1 | |
4 | 5730 | 5450 | 5920 | 5700 | 236.4 |
Notch Type | Notch Radius (mm), ρ | P1 | P2 | P3 | Paverage | Standard Deviation |
---|---|---|---|---|---|---|
U-notch | 1 | 5120 | 5440 | 6050 | 5536 | 472.4 |
2 | 5660 | 5710 | 6300 | 5890 | 355.9 | |
4 | 7711 | 7673 | 7260 | 7548 | 250.1 | |
V-notch, 30° | 1 | 4520 | 4550 | 5100 | 4723 | 326.5 |
2 | 6100 | 5420 | 5640 | 5720 | 347.0 | |
4 | 6800 | 7300 | 6900 | 7000 | 264.6 | |
V-notch, 60° | 1 | 3470 | 3510 | 4150 | 3710 | 381.6 |
2 | 5040 | 4790 | 4530 | 4786 | 255.0 | |
4 | 5780 | 6450 | 5960 | 6063 | 346.7 | |
V-notch, 90° | 1 | 3230 | 3100 | 3540 | 3290 | 226.0 |
2 | 4160 | 3965 | 3670 | 3923 | 246.7 | |
4 | 4970 | 5310 | 5100 | 5126 | 171.5 |
Notch Type | Notch radius (mm), ρ | P1 | P2 | P3 | Paverage | Standard Deviation |
---|---|---|---|---|---|---|
U-notch | 1 | 7900 | 8300 | 8430 | 8210 | 276.2 |
2 | 8900 | 8300 | 8430 | 8550 | 315.6 | |
4 | 9330 | 8940 | 9420 | 9230 | 255.1 | |
V-notch, 30° | 1 | 7130 | 7480 | 7850 | 7486 | 360.0 |
2 | 7300 | 8200 | 7800 | 7766 | 450.9 | |
4 | 8100 | 8400 | 8700 | 8400 | 300.0 | |
V-notch, 60° | 1 | 6190 | 6580 | 6730 | 6500 | 278.7 |
2 | 6250 | 7380 | 6730 | 6786 | 567.1 | |
4 | 7060 | 7530 | 7670 | 7420 | 319.5 | |
V-notch, 90° | 1 | 5260 | 5780 | 5960 | 5666 | 363.5 |
2 | 5430 | 6470 | 5650 | 5850 | 548.1 | |
4 | 6110 | 6470 | 7100 | 6560 | 501.1 |
Composite Configuration | ρ (mm) | Deviation VIMC-MTS Criterion (%) | Deviation VIMC-MS Criterion (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
U-Notch | 30° | 60° | 90° | U-Notch | 30° | 60° | 90° | ||
Unidirectional | 1 | −6.1 | −6.7 | −7.3 | −4.8 | 10.6 | 9.6 | 9.6 | 11.9 |
2 | −7.9 | −6.2 | −5.3 | −3.2 | 7.1 | 5.0 | 6.6 | 9.2 | |
4 | −4.3 | −4.1 | −3.9 | −4.1 | 6.4 | 3.2 | 3.3 | 3.9 | |
Cross-ply | 1 | −8.4 | −7.2 | −7.3 | −0.7 | 6.8 | 11.9 | 11.9 | 21.9 |
2 | −7.6 | −3.7 | −6.2 | −2.1 | 9.4 | 16.9 | 9.0 | 15.2 | |
4 | −3.1 | −0.5 | −0.4 | −5.3 | 17.3 | 8.4 | 10.1 | 6.4 | |
Quasi-isotropic | 1 | −7.7 | −7.9 | −6.1 | −6.8 | 5.1 | 12.8 | 13.8 | 11.8 |
2 | −10.7 | −8.9 | −9.9 | −5.3 | 6.0 | 9.4 | 8.9 | 12.5 | |
4 | −5.5 | −5.5 | −5.3 | −7.2 | 11.0 | 7.3 | 8.3 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torabi, A.R.; Motamedi, M.A.; Bahrami, B.; Noushak, M.; Cicero, S.; Álvarez, J.A. Determination of Translaminar Notch Fracture Toughness for Laminated Composites Using Brazilian Disk Test. Polymers 2022, 14, 3246. https://doi.org/10.3390/polym14163246
Torabi AR, Motamedi MA, Bahrami B, Noushak M, Cicero S, Álvarez JA. Determination of Translaminar Notch Fracture Toughness for Laminated Composites Using Brazilian Disk Test. Polymers. 2022; 14(16):3246. https://doi.org/10.3390/polym14163246
Chicago/Turabian StyleTorabi, Ali Reza, Mohammad Amin Motamedi, Bahador Bahrami, Meghdad Noushak, Sergio Cicero, and José Alberto Álvarez. 2022. "Determination of Translaminar Notch Fracture Toughness for Laminated Composites Using Brazilian Disk Test" Polymers 14, no. 16: 3246. https://doi.org/10.3390/polym14163246
APA StyleTorabi, A. R., Motamedi, M. A., Bahrami, B., Noushak, M., Cicero, S., & Álvarez, J. A. (2022). Determination of Translaminar Notch Fracture Toughness for Laminated Composites Using Brazilian Disk Test. Polymers, 14(16), 3246. https://doi.org/10.3390/polym14163246