Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Bitumen and Modifiers Selection
2.1.2. Preparation of PTFE and PC-Modified Bitumen
2.2. Testing Methods
Rheological, Mechanical, and Physical Properties
Conventional Tests Methods of PMBs
Short-Term Aging (STA) and Long-Term Aging (LTA) Methods of Binders
Dynamic Shear Rheometer Test
Rotational Viscosity Test
Bending Beam Rheometer Test
2.3. Analytical Characterization
2.3.1. Scanning Electron Microscopy
2.3.2. FTIR Spectroscopy Analysis
2.3.3. XRD Analysis
3. Results and Discussion
3.1. Physical and Rheological Properties Results
3.2. Dynamic Shear Rheometer Test
3.3. Rotational Viscosity Test
3.4. Bending Beam Rheometer Test
3.5. Scanning Electron Microscopy
3.6. Fourier Transform Infrared Spectroscopy
3.7. X-ray Diffraction Analysis
4. Conclusions
- Flash and fire point and softening point temperatures substantially increased as the PC. PTFE concentration in the bitumen mix increased slightly. At the same time, ductility and penetration values dramatically decreased, indicating that the binder has become considerably harder by modification and is much more appropriate for high service temperatures. The chemical reaction between neat bitumen and modifiers, PC and PTFE, is the cause of the rheological behavioral modification.
- The RTFOT findings illustrate that increasing the percentages of PC and PTFE in the mixture reduces bitumen aging, indicating that PMBs dissipate less mass during the blending and compressing stage. Furthermore, this explains that the chemical change in mixes improves the PMBs resistance to temperature and oxidation.
- The complex modulus (G*) of un-aged and aged modified-bitumen increased with increasing modifiers percentages, whereas phase angle (δ) values declined significantly, signifying that the modified binder was stiffer (higher G* values) and comparatively more elastic solid (lower δ values). SUPERPAVE suggested RTFOT-aged, and PAV-aged asphalt binder values as the rutting parameter (G*/sinδ) and fatigue parameter (G*.sinδ) shall be 2.2 kPa and 5000 kPa, respectively. The (G*.sinδ) and (G*/sinδ) values obtained are from 655 to 1255 kPa and 2.289 to 13.653 kPa respectively. According to the results, it is possible to say that PC and PTFE-modified bitumen would be more suitable to use in hot climate regions because binders become stiff enough to resist rutting, fatigue failures, and permanent deformations.
- The combination of modifiers, PC and PTFE, with neat bitumen increased the neat bitumen viscosity for PCMB, PTFEMB, and PCMB-PTFEMB by 44%, 50%, and 55.75% at 135°C, and 111.10%, 127.80%, and 138.88% at 165 °C accordingly. The findings reveal that PC and PTFE decreased the flow parameters and increased the stiffness characteristics of neat grades of bitumen.
- BBR test results revealed that with the application of the load, the hardness of the PC and PTFE-modified bitumen exposed to low-temperature ranges and the rate of their hardening speed significantly increased. BBR results show that as modifiers’ content increases, the base binder’s creep stiffness values increased by 74.8%, 75.8%, and 74.5% at −16 °C, −22 °C, and −28 °C, respectively, which indicates that bitumen becomes more rigid and stiff by modification.
- From the result of chemical reaction in the bitumen mix, SEM, X-ray Diffraction, and FTIR studies showed that modifiers, PC and PTFE, interacted with the primary macro-molecular groups of the neat bitumen, eventually resulting in a homogenous single-phase structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Sha, A.; Xiao, J.; Li, Y.; Huang, Y. Experimental study on filtration effect and mechanism of pavement runoff in permeable asphalt pavement. Constr. Build. Mater. 2015, 100, 102–110. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Li, L.; Zhu, C. Evaluation of aging behaviors of asphalt with different thermochromic powders. Constr. Build. Mater. 2017, 155, 1198–1205. [Google Scholar] [CrossRef]
- Chen, J.-S.; Liao, M.-C.; Shiah, M.-S. Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. J. Mater. Civ. Eng. 2002, 14, 224–229. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Durrieu, F.; Farcas, F.; Mouillet, V. The influence of UV aging of a styrene/butadiene/styrene modified bitumen: Comparison between laboratory and on site aging. Fuel 2007, 86, 1446–1451. [Google Scholar] [CrossRef]
- Wu, S.; Pang, L.; Liu, G.; Zhu, J. Laboratory study on ultraviolet radiation aging of bitumen. J. Mater. Civ. Eng. 2010, 22, 767–772. [Google Scholar] [CrossRef]
- Xiao, F.; Newton, D.; Putman, B.; Punith, V.; Amirkhanian, S.N. A long-term ultraviolet aging procedure on foamed WMA mixtures. Mater. Struct. 2013, 46, 1987–2001. [Google Scholar] [CrossRef]
- Mouillet, V.; Farcas, F.; Besson, S. Ageing by UV radiation of an elastomer modified bitumen. Fuel 2008, 87, 2408–2419. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Wen, J.; Chen, Z. The temperature effects in aging index of asphalt during UV aging process. Constr. Build. Mater. 2015, 93, 1125–1131. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, M.; Wu, S.; Amirkhanian, S.N. A Long-Term Ultraviolet Aging Effect on Rheology of WMA Binders. Int. J. Pavement Res. Technol. 2013, 6, 496–504. [Google Scholar]
- Xue, Y.; Ge, Z.; Li, F.; Su, S.; Li, B. Modified asphalt properties by blending petroleum asphalt and coal tar pitch. Fuel 2017, 207, 64–70. [Google Scholar] [CrossRef]
- Robinson, H. Polymers in Asphalt; iSmithers Rapra Publishing: Shropshire, UK, 2005; Volume 15. [Google Scholar]
- Apostolidis, P.; Liu, X.; Kasbergen, C.; Scarpas, A.T. Synthesis of asphalt binder aging and the state of the art of antiaging technologies. Transp. Res. Rec. 2017, 2633, 147–153. [Google Scholar] [CrossRef]
- Ling, M.; Luo, X.; Chen, Y.; Gu, F.; Lytton, R.L. Mechanistic-empirical models for top-down cracking initiation of asphalt pavements. Int. J. Pavement Eng. 2020, 21, 464–473. [Google Scholar] [CrossRef]
- Ling, M.; Chen, Y.; Hu, S.; Luo, X.; Lytton, R.L. Enhanced model for thermally induced transverse cracking of asphalt pavements. Constr. Build. Mater. 2019, 206, 130–139. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, C.; Yuan, Y.; Gao, Q.; Zheng, K.; Yan, J. Evaluation of ethylene–acrylic acid copolymer (EAA)-modified asphalt: Fundamental investigations on mechanical and rheological properties. Constr. Build. Mater. 2015, 90, 44–52. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Ashani, S.S.; Yadollahi, G. Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction. Constr. Build. Mater. 2011, 25, 1379–1387. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens☆. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Airey, G.D.; Mohammed, M.H.; Fichter, C. Rheological characteristics of synthetic road binders. Fuel 2008, 87, 1763–1775. [Google Scholar] [CrossRef]
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Sheikhzadeh, M.; Hejazi, S.M. Fiber-reinforced asphalt-concrete—A review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
- Bazlamit, S.M.; Reza, F. Changes in asphalt pavement friction components and adjustment of skid number for temperature. J. Transp. Eng. 2005, 131, 470–476. [Google Scholar] [CrossRef]
- Fischer, H.R.; Cernescu, A. Relation of chemical composition to asphalt microstructure–Details and properties of micro-structures in bitumen as seen by thermal and friction force microscopy and by scanning near-filed optical microscopy. Fuel 2015, 153, 628–633. [Google Scholar] [CrossRef]
- Al-Rub, R.K.A.; Darabi, M.K.; Little, D.N.; Masad, E.A. A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. Int. J. Eng. Sci. 2010, 48, 966–990. [Google Scholar] [CrossRef]
- Appiah, J.K.; Berko-Boateng, V.N.; Tagbor, T.A. Use of waste plastic materials for road construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Hou, X.; Lv, S.; Chen, Z.; Xiao, F. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018, 121, 304–316. [Google Scholar] [CrossRef]
- Jin, J.; Tan, Y.; Liu, R.; Lin, F.; Wu, Y.; Qian, G.; Wei, H.; Zheng, J. Structure characteristics of organic bentonite and the effects on rheological and aging properties of asphalt. Powder Technol. 2018, 329, 107–114. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Downturn, A.M. Global Demand for Polycarbonate Growing Again, Says IHS Chemical Report; IHS Online Pressroom: Englewood, CO, USA, 2012. [Google Scholar]
- Jerabek, M.; Major, Z.; Lang, R.W. Strain determination of polymeric materials using digital image correlation. Polym. Test. 2010, 29, 407–416. [Google Scholar] [CrossRef]
- Van Der Walt, I.; Bruinsma, O. Depolymerization of clean unfilled PTFE waste in a continuous process. J. Appl. Polym. Sci. 2006, 102, 2752–2759. [Google Scholar] [CrossRef]
- Gama, D.A.; Júnior, J.M.R.; de Melo, T.J.A.; Rodrigues, J.K.G. Rheological studies of asphalt modified with elastomeric polymer. Constr. Build. Mater. 2016, 106, 290–295. [Google Scholar] [CrossRef]
- Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Process. Technol. 2015, 140, 172–179. [Google Scholar] [CrossRef]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef] [PubMed]
- De Sá, M.d.F.A.; Lins, V.d.F.C.; Pasa, V.M.D.; Leite, L.F.M. Weathering aging of modified asphalt binders. Fuel Process. Technol. 2013, 115, 19–25. [Google Scholar] [CrossRef]
- Ge, D.; Yan, K.; You, L.; Wang, Z. Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 143, 419–428. [Google Scholar] [CrossRef]
- Gama, D.A.; Yan, Y.; Rodrigues, J.K.G.; Roque, R. Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Constr. Build. Mater. 2018, 169, 522–529. [Google Scholar] [CrossRef]
- Seyfullah, K. Investigation of penetration and penetration index in bitumen modified with SBS and reactive terpolymer. Sigma 2010, 28, 26–34. [Google Scholar]
- Topal, A. Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Process. Technol. 2010, 91, 45–51. [Google Scholar] [CrossRef]
- Keyf, S. The modification of bitumen with reactive ethylene terpolymer, styrene butadiene styrene and variable amounts of ethylene vinyl acetate. Res. Chem. Intermed. 2015, 41, 1485–1497. [Google Scholar] [CrossRef]
- Irfan, M.; Saeed, M.; Ahmed, S.; Ali, Y. Performance evaluation of elvaloy as a fuel-resistant polymer in asphaltic concrete airfield pavements. J. Mater. Civ. Eng. 2017, 29, 04017163. [Google Scholar] [CrossRef]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and bitumen modification: A review on latest advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef]
- Geckil, T.; Ahmedzade, P.; Alatas, T. Effect of carbon black on the high and low temperature properties of bitumen. Int. J. Civ. Eng. 2018, 16, 207–218. [Google Scholar] [CrossRef]
- Zaniewski, J.P.; Pumphrey, M.E. Evaluation of performance graded asphalt binder equipment and testing protocol. Asph. Technol. Program 2004, 107, 376–384. [Google Scholar]
- West, R.C.; Watson, D.E.; Turner, P.A.; Casola, J.R. Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt; No. Project 9-39; National Academy of Sciences: Washington, DC, USA, 2010. [Google Scholar]
- Nicholls, C. Analysis of available data for validation of bitumen tests: Report on phase 1 of the BiTVAL project. In Advanced Course on Bitumen Technology; FEHRL: Stellenbosch, South Africa, 2007. [Google Scholar]
- Mazumder, M.; Ahmed, R.; Ali, A.W.; Lee, S.-J. SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Constr. Build. Mater. 2018, 186, 313–329. [Google Scholar] [CrossRef]
- Taherkhani, H.; Afroozi, S. The properties of nanosilica-modified asphalt cement. Pet. Sci. Technol. 2016, 34, 1381–1386. [Google Scholar] [CrossRef]
- Celauro, B.; Celauro, C.; Presti, D.L.; Bevilacqua, A. Definition of a laboratory optimization protocol for road bitumen improved with recycled tire rubber. Constr. Build. Mater. 2012, 37, 562–572. [Google Scholar] [CrossRef]
- Baklokk, L.; Skoglund, R.; Kalman, B.; Peltonene, P. Superpave Test Methods for Asphalt–Procedure for DSR Testing; NORDTEST Report; NORDTEST: Serravalle Scrivia, Italy, 2002. [Google Scholar]
- Ahmedzade, P. The investigation and comparison effects of SBS and SBS with new reactive terpolymer on the rheological properties of bitumen. Constr. Build. Mater. 2013, 38, 285–291. [Google Scholar] [CrossRef]
- Vo, H.V.; Park, D.-W. Application of conductive materials to asphalt pavement. Adv. Mater. Sci. Eng. 2017, 2017, 4101503. [Google Scholar] [CrossRef]
- Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, J.; Wu, S. Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen. Constr. Build. Mater. 2012, 27, 553–559. [Google Scholar] [CrossRef]
- Hrachová, J.; Komadel, P.; Fajnor, V.Š. The effect of mechanical treatment on the structure of montmorillonite. Mater. Lett. 2007, 61, 3361–3365. [Google Scholar] [CrossRef]
- Wang, J.; Kim, H.; Shi, F.G.; Zhao, B.; Nieh, T. Thickness dependence of morphology and mechanical properties of on-wafer low-k PTFE dielectric films. Thin Solid Film. 2000, 377, 413–417. [Google Scholar] [CrossRef]
Sr. No | Physical Properties | Temperature Value (°C) | ASTM Methods | Values |
---|---|---|---|---|
1 | Penetration grade (100 g, 5 s, 0.1 mm) | 25 | D5 | 70 |
2 | Ductility value test (5 cm/min, cm) | 25 | D113 | 109.5 |
3 | SPT value, °C | - | D36 | 51 |
4 | FPT1 value, °C | - | D92 | 151 |
5 | FPT2, °C | - | D92 | 159 |
6 | Specific Gravity (g/cm3) | 25 | D70 | 1.035 |
7 | Absolute viscosity (Pa.s) | 135 | D4402 | 0.52 |
8 | Penetration index | - | - | −0.16 |
Sr. No | Properties/Units | Values |
---|---|---|
1 | Specific Gravity, g/cm3 | 1.20 |
2 | Elongation at break, % | 111 |
4 | Ultimate Tensile Strength, MPa | 65.50 |
5 | Elastic Modulus, GPa | 2.3786 |
6 | Compressive Strength, MPa | 85.0 |
Sr. No | Properties/Units | Values |
---|---|---|
1 | Specific Gravity, g/cm3 | 2.164 |
2 | Elongation at break, % | 451 |
3 | Shear Strength, MPa | 4.98 |
4 | Ultimate Tensile Strength, MPa | 31.0 |
5 | Elastic Modulus, MPa | 30.9 |
6 | Compressive Strength, MPa | 23.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansar, M.; Sikandar, M.A.; Althoey, F.; Tariq, M.A.U.R.; Alyami, S.H.; Elsayed Elkhatib, S. Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen. Polymers 2022, 14, 3283. https://doi.org/10.3390/polym14163283
Ansar M, Sikandar MA, Althoey F, Tariq MAUR, Alyami SH, Elsayed Elkhatib S. Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen. Polymers. 2022; 14(16):3283. https://doi.org/10.3390/polym14163283
Chicago/Turabian StyleAnsar, Muhammad, Muhammad Ali Sikandar, Fadi Althoey, Muhammad Atiq Ur Rehman Tariq, Saleh H. Alyami, and Samah Elsayed Elkhatib. 2022. "Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen" Polymers 14, no. 16: 3283. https://doi.org/10.3390/polym14163283
APA StyleAnsar, M., Sikandar, M. A., Althoey, F., Tariq, M. A. U. R., Alyami, S. H., & Elsayed Elkhatib, S. (2022). Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen. Polymers, 14(16), 3283. https://doi.org/10.3390/polym14163283