The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs
Abstract
:1. Introduction
2. Factors Determining the Action of Hormones as Drugs
3. Factors Determining the Effect of Hormones Applied to the Skin
4. Potential of Hydrogels as Carriers of Hormones Administered to the Skin
5. Permeation Enhancers That Promote the Penetration of Hormones through the Skin
5.1. Fatty Acids and Surfactants
5.2. Sulfoxides
5.3. Alcohols, Glycols and Glycol Ethers
5.4. Esters
5.5. Terpenes
5.6. Ureas and Lactam
5.7. Permeation Enhancement Technologies
6. Mechanism of Penetration of Hormones through the Skin
7. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Brucker-Davis, F.; Thayer, K.; Colborn, T. Significant effects of mild endogenous hormonal changes in humans: Considerations for low-dose testing. Environ. Health Perspect. 2001, 109, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, D.G. Hormonal therapy: Historical perspective to future directions. Urology 2003, 61, 3–7. [Google Scholar] [CrossRef]
- Majewska, E.; Mordzak, L.; Kozłowska, M. Microbiological methods for peptide and protein hormones synthesis. Farm. Pol. 2014, 70, 215–223. [Google Scholar]
- Hart, I.C. Biotechnology and production-related hormones. Proc. Nutr. Soc. 1987, 46, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Shufelt, C.L.; Merz, C.N.; Prentice, R.L.; Pettinger, M.B.; Rossouw, J.E.; Aroda, V.R.; Kaunitz, A.M.; Lakshminarayan, K.; Martin, L.W.; Phillips, L.S.; et al. Hormone therapy dose, formulation, route of delivery, and risk of cardiovascular events in women: Findings from the Women’s Health Initiative Observational Study. Menopause 2014, 21, 260–266. [Google Scholar] [CrossRef]
- Agarwal, S.; Alzahrani, F.A.; Ahmed, A. Hormone Replacement Therapy: Would it be Possible to Replicate a Functional Ovary? Int. J. Mol. Sci. 2018, 19, 3160. [Google Scholar] [CrossRef]
- Cagnacci, A.; Venier, M. The Controversial History of Hormone Replacement Therapy. Medicina 2019, 55, 602. [Google Scholar] [CrossRef]
- Kopchick, J.J.; Basu, R.; Berryman, D.E.; Jorgensen, J.O.L.; Johannsson, G.; Puri, V. Covert actions of growth hormone: Fibrosis, cardiovascular diseases and cancer. Nat. Rev. Endocrinol. 2022, 18, 558–573. [Google Scholar] [CrossRef]
- Xue, J.; Liang, S.; Ma, J.; Xiao, Y. Effect of growth hormone therapy on liver enzyme and other cardiometabolic risk factors in boys with obesity and nonalcoholic fatty liver disease. BMC Endocr. Disord. 2022, 22, 49. [Google Scholar] [CrossRef]
- Pan, S.; Guo, Y.; Hong, F.; Xu, P.; Zhai, Y. Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166281. [Google Scholar] [CrossRef]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef]
- Putney, S.D.; Burke, P.A. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 1998, 16, 153–157. [Google Scholar] [CrossRef]
- Goldenzweig, A.; Fleishman, S.J. Principles of Protein Stability and Their Application in Computational Design. Annu. Rev. Biochem. 2018, 87, 105–129. [Google Scholar] [CrossRef]
- Hanson, M.A.; Rouan, S.K.E. Introduction to formulation of protein pharmaceuticals. In Stability of Protein Pharmaceutics, Part B; Ahern, T.J., Manning, M.C., Eds.; Plenum Press: New York, NY, USA, 1992; pp. 215–248. [Google Scholar]
- Wang, W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 1999, 185, 129–188. [Google Scholar] [CrossRef]
- Wang, W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000, 203, 1–60. [Google Scholar] [CrossRef]
- Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015, 17, 134–143. [Google Scholar] [CrossRef]
- Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013, 4, 1443–1467. [Google Scholar] [CrossRef]
- Zhang, R.X.; Dong, K.; Wang, Z.; Miao, R.; Lu, W.; Wu, X.Y. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021, 13, 1261. [Google Scholar] [CrossRef]
- Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019, 11, 33. [Google Scholar] [CrossRef]
- Zaman, R.; Islam, R.A.; Ibnat, N.; Othman, I.; Zaini, A.; Lee, C.Y.; Chowdhury, E.H. Current strategies in extending half-lives of therapeutic proteins. J. Control. Release 2019, 30, 176–189. [Google Scholar] [CrossRef]
- Bond, J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019, 294, 1643–1651. [Google Scholar] [CrossRef]
- Bikle, D.D. The Free Hormone Hypothesis: When, Why, and How to Measure the Free Hormone Levels to Assess Vitamin D, Thyroid, Sex Hormone, and Cortisol Status. JBMR Plus 2020, 5, e10418. [Google Scholar] [CrossRef]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Swerdloff, R.S.; Dudley, R.E.; Page, S.T.; Wang, C.; Salameh, W.A. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. Endocr. Rev. 2017, 38, 220–254. [Google Scholar] [CrossRef]
- Marchetti, P.M.; Barth, J.H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 2013, 50, 95–107. [Google Scholar] [CrossRef]
- Ahn, S.R.; An, J.H.; Lee, S.H.; Song, H.S.; Jang, J.; Park, T.H. Peptide hormone sensors using human hormone receptor-carrying nanovesicles and graphene FETs. Sci. Rep. 2020, 10, 388. [Google Scholar] [CrossRef]
- Pabla, D.; Zia, H. A comparative permeation/release study of different testosterone gel formulations. Drug Deliv. 2007, 14, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Zidan, A.S.; Kamal, N.; Alayoubi, A.; Seggel, M.; Ibrahim, S.; Rahman, Z.; Cruz, C.N.; Ashraf, M. Effect of Isopropyl Myristate on Transdermal Permeation of Testosterone from Carbopol Gel. J. Pharm. Sci. 2017, 106, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- An, N.M.; Kim, D.D.; Shin, Y.H.; Lee, C.H. Development of a novel soft hydrogel for the transdermal delivery of testosterone. Drug Dev. Ind. Pharm. 2003, 29, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.K.; Cho, Y.S.; Han, S.D.; Chang, J.K.; Yoon, E.J.; Ko, D.W.; Lim, C.B.; Chung, S.J.; Shim, C.K.; Kim, D.D. In vitro and In vivo Evaluation of Novel Gel Formulations of Testosterone for Transdermal Delivery. J. Kor. Pharm. Sci. 2005, 35, 329–332. [Google Scholar]
- Olsson, H.; Sandström, R.; Neijber, A.; Carrara, D.; Grundemar, L. Pharmacokinetics and bioavailability of a new testosterone gel formulation in comparison to Testogel® in healthy men. Clin. Pharmacol. Drug Dev. 2014, 3, 358–364. [Google Scholar] [CrossRef]
- Bilal, A.; Alzen, H. Evaluation of The Effect of Some Dermal Penetration Enhancers on The Release and Permeation of Testosterone from Hydrogels. Arab J. Pharm. Sci. 2018, 1, 19–30. [Google Scholar]
- Valenta, C.; Wedenig, S. Effects of penetration enhancers on the in-vitro percutaneous absorption of progesterone. J. Pharm. Pharmacol. 1997, 49, 955–959. [Google Scholar] [CrossRef]
- Kählig, H.; Hasanovic, A.; Biruss, B.; Höller, S.; Grim, J.; Valenta, C. Chitosan-glycolic acid: A possible matrix for progesterone delivery into skin. Drug Dev. Ind. Pharm. 2009, 35, 997–1002. [Google Scholar] [CrossRef]
- Matsui, R.; Ueda, O.; Uchida, S.; Namiki, N. Transdermal absorption of natural progesterone from alcoholic gel formulations with hydrophilic surfactant. Drug Dev. Ind. Pharm. 2015, 41, 1026–1029. [Google Scholar] [CrossRef]
- Bassani, A.S.; Banov, D.; Carvalho, M. Evaluation of the in vitro Human Skin Percutaneous Absorption of Progesterone in Versabase® Using the Franz Skin Finite Dose Model. J. Women Health Care 2017, 6, 4. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Maciążek-Jurczyk, M.; Pożycka, J.; Dolińska, B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. Pharmaceutics 2021, 13, 1215. [Google Scholar] [CrossRef]
- Siemiradzka, W.; Dolińska, B.; Ryszka, F. Modelling and Control of Corticotropin Permeation from Hydrogels across a Natural Membrane in the Presence of Albumin. Processes 2021, 9, 1674. [Google Scholar] [CrossRef]
- Vermeire, A.; De Muynck, C.; Vandenbossche, G.; Eechaute, W.; Geerts, M.L.; Remon, J.P. Sucrose laurate gels as a percutaneous delivery system for oestradiol in rabbits. J. Pharm. Pharmacol. 1996, 48, 463–467. [Google Scholar] [CrossRef]
- Monti, D.; Chetoni, P.; Burgalassi, S.; Najarro, M.; Saettone, M.F.; Boldrini, E. Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int. J. Pharm. 2002, 237, 209–214. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, R.; Alvarez-Lorenzo, C.; Concheiro, A. Controlled release of estradiol solubilized in carbopol/surfactant aggregates. J. Control. Release 2003, 93, 319–330. [Google Scholar] [CrossRef]
- Bentley, M.V.L.B.; Kedor, E.R.M.; Vianna, R.F.; Collet, J.H. The influence of lecithin and urea on the in vitro permeation of hydrocortisone acetate through skin from hairless mouse. Int. J. Pharm. 1997, 146, 255–262. [Google Scholar] [CrossRef]
- El-Kattan, A.F.; Asbill, C.S.; Michniak, B.B. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. Int. J. Pharm. 2000, 198, 179–189. [Google Scholar] [CrossRef]
- Meler, J.; Szczesniak, M.; Grimling, B.; Pluta, J. Application of Chitosan in The Formulation if Hydrogel Applied on Skin. Progress on Chemistry and Application of Chitin and its Derivatives. Prog. Chem. Appl. Chitin Deriv. 2013, 18, 181–186. [Google Scholar]
- Szcześniak, M.; Pluta, J. The effect of selected excipients on properties hydrogels on the basis Carbopol 934P. Polym. Med. 2013, 43, 29–34. (In Polish) [Google Scholar]
- Zhang, L.; Yin, H.; Lei, X.; Lau, J.N.Y.; Yuan, M.; Wang, X.; Zhang, F.; Zhou, F.; Qi, S.; Shu, B.; et al. A Systematic Review and Meta-Analysis of Clinical Effectiveness and Safety of Hydrogel Dressings in the Management of Skin Wounds. Front. Bioeng. Biotechnol. 2019, 7, 342. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Sobczak, M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020, 12, 396. [Google Scholar] [CrossRef]
- Shoukat, H.; Buksh, K.; Noreen, S.; Pervaiz, F.; Maqbool, I. Hydrogels as potential drug-delivery systems: Network design and applications. Ther. Deliv. 2021, 12, 375–396. [Google Scholar] [CrossRef]
- Huerta-López, C.; Alegre-Cebollada, J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials 2021, 11, 1656. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed]
- Benson, H.A.E.; Grice, J.E.; Mohammed, Y.; Namjoshi, S.; Roberts, M.S. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr. Drug Deliv. 2019, 16, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Chaulagain, B.; Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Passive delivery of protein drugs through transdermal route. Artif. Cells Nanomed. Biotechnol. 2018, 46, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.; Moghimi, H.R. Skin permeability, a dismissed necessity for anti-wrinkle peptide performance. Int. J. Cosmet. Sci. 2022, 44, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zakrewsky, M.; Chen, M.; Menegatti, S.; Muraski, J.A.; Mitragotri, S. Peptides as skin penetration enhancers: Mechanisms of action. J. Control. Release 2015, 199, 168–178. [Google Scholar] [CrossRef]
- Kathuria, H.; Handral, H.K.; Cha, S.; Nguyen, D.T.P.; Cai, J.; Cao, T.; Wu, C.; Kang, L. Enhancement of Skin Delivery of Drugs Using Proposome Depends on Drug Lipophilicity. Pharmaceutics 2021, 13, 1457. [Google Scholar] [CrossRef]
- Trommer, H.; Neubert, R.H. Overcoming the stratum corneum: The modulation of skin penetration. A review. Skin Pharmacol. Physiol. 2006, 19, 106–121. [Google Scholar] [CrossRef]
- Pünnel, L.C.; Lunter, D.J. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics 2021, 13, 932. [Google Scholar] [CrossRef]
- Alberti, I.; Grenier, A.; Kraus, H.; Carrara, D.N. Pharmaceutical development and clinical effectiveness of a novel gel technology for transdermal drug delivery. Expert Opin. Drug Deliv. 2005, 2, 935–950. [Google Scholar] [CrossRef]
- Bashir, S.J.; Maibach, H. Cutaneous metabolism of xenobiotics. In Percutaneous Absorption; Bronaugh, R.L., Maibach, H., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 97, pp. 65–80. [Google Scholar]
- Steinstraesser, I.; Merkle, H.P. Dermal metabolism of topically applied drugs: Pathways and models reconsidered. Pharm. Acta Helv. 1995, 70, 3–24. [Google Scholar] [CrossRef]
- Zouboulis, C.C. The skin as an endocrine organ. Dermatoendocrinology 2009, 1, 250–252. [Google Scholar] [CrossRef]
- Levin, E.R.; Hammes, S.R. Nuclear receptors outside the nucleus: Extranuclear signalling by steroid receptors. Nat. Rev. Mol. Cell Biol. 2016, 17, 783–797. [Google Scholar] [CrossRef]
- Anyetei-Anum, C.S.; Roggero, V.R.; Allison, L.A. Thyroid hormone receptor localization in target tissues. J. Endocrinol. 2018, 237, R19–R34. [Google Scholar] [CrossRef]
- Fox, E.M.; Andrade, J.; Shupnik, M.A. Novel actions of estrogen to promote proliferation: Integration of cytoplasmic and nuclear pathways. Steroids 2009, 74, 622–627. [Google Scholar] [CrossRef]
- Pollow, K.; Inthraphuvasak, J.; Manz, B.; Grill, H.J.; Pollow, B. A comparison of cytoplasmic and nuclear estradiol and progesterone receptors in human fallopian tube and endometrial tissue. Fertil. Steril. 1981, 36, 615–622. [Google Scholar] [CrossRef]
- Bech, E.M.; Pedersen, S.L.; Jensen, K.J. Chemical Strategies for Half-Life Extension of Biopharmaceuticals: Lipidation and Its Alternatives. ACS Med. Chem. Lett. 2018, 9, 577–580. [Google Scholar] [CrossRef]
- Malandrino, N.; Smith, R.J. Synthesis, secretion, and transport of peptide hormones. In Principles of Endocrinology and Hormone Action; Belfiroe, A., LeRoith, D., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 1, pp. 29–42. [Google Scholar]
- Lackner, C.; Daufeldt, S.; Wildt, L.; Alléra, A. Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles. III. Specificity and stereospecificity. J. Steroid Biochem. Mol. Biol. 1998, 64, 69–82. [Google Scholar] [CrossRef]
- Atkovska, K.; Klingler, J.; Oberwinkler, J.; Keller, S.; Hub, J.S. Rationalizing Steroid Interactions with Lipid Membranes: Conformations, Partitioning, and Kinetics. ACS Cent. Sci. 2018, 4, 1155–1165. [Google Scholar] [CrossRef]
- Rahbari, R.; Ichim, I.; Bamsey, R.; Burridge, J.; Guy, O.J.; Bolodeoku, J.; Graz, M. Characterisation of Drug Delivery Efficacy Using Microstructure-Assisted Application of a Range of APIs. Pharmaceutics 2020, 12, 1213. [Google Scholar] [CrossRef]
- Sevilla, L.M.; Pérez, P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int. J. Mol. Sci. 2018, 19, 1906. [Google Scholar] [CrossRef] [PubMed]
- Yaşar, P.; Ayaz, G.; User, S.D.; Güpür, G.; Muyan, M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod. Med. Biol. 2016, 16, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Laffont, S.; Seillet, C.; Guéry, J.C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front. Immunol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Serres, M.; Viac, J.; Schmitt, D. Glucocorticoid receptor localization in human epidermal cells. Arch. Dermatol. Res. 1996, 288, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
- Trüeb, R.M. Hormone und Haarwachstum [Hormones and hair growth]. Hautarzt 2010, 61, 487–495. (In German) [Google Scholar] [CrossRef]
- Richards, R.G.; Hartman, S.M. Human dermal fibroblast cells express prolactin in vitro. J. Investig. Dermatol. 1996, 106, 1250–1255. [Google Scholar] [CrossRef]
- Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022, 8, e08938. [Google Scholar] [CrossRef]
- Dayan, N. Pathways for skin penetration. Cosmet. Toilet. 2005, 120, 67–76. [Google Scholar]
- Doostmohammadi, M.; Ameri, A.; Mohammadinejad, R.; Dehghannoudeh, N.; Banat, I.M.; Ohadi, M.; Dehghannoudeh, G. Hydrogels for Peptide Hormones Delivery: Therapeutic and Tissue Engineering Applications. Drug Des. Dev. Ther. 2019, 3, 3405–3418. [Google Scholar] [CrossRef]
- Jadach, B. From the carrier of active substance to drug delivery systems. JMS 2017, 86, 231–236. [Google Scholar] [CrossRef]
- Chirani, N.; Yahia, L.; Gritsch, L.; Motta, F.L.; Chirani, S.; Fare, S. History and Applications of Hydrogels. J. Biomed. Sci. 2015, 4, 13. [Google Scholar] [CrossRef]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef]
- Croisfelt, F.M.; Tundisi, L.L.; Ataide, J.A.; Silveira, E.; Tambourgi, E.B.; Jozala, A.F.; Souto, E.M.B.; Mazzola, P.G. Modified-release topical hydrogels: A ten-year review. J. Mater. Sci. 2019, 54, 10963–10983. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Sughir, A.A.; Damodar, G. Oleogel: A promising base for transdermal formulations. Asian J. Pharm. 2012, 6, 1–9. [Google Scholar] [CrossRef]
- Sanchez, R.; Franco, J.M.; Delgado, M.A.; Valencia, C.; Gallegos, C. Rheology of oleogels based on sorbitan and glyceryl monosteatates and vegetavle oil for lubricating applications. Grasas Aceit. 2011, 62, 328–336. [Google Scholar] [CrossRef]
- Parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv. Pharm. Bull. 2017, 7, 515–530. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Dejeu, I.L.; Vicaș, L.G.; Vlaia, L.L.; Jurca, T.; Mureșan, M.E.; Pallag, A.; Coneac, G.H.; Olariu, I.V.; Muț, A.M.; Bodea, A.S.; et al. Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals 2022, 15, 175. [Google Scholar] [CrossRef]
- Varges, P.R.; Costa, C.M.; Fonseca, B.S.; Naccache, M.F.; De Souza Mendes, P.R. Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 2019, 4, 3. [Google Scholar] [CrossRef]
- Hadgraft, J.; Lane, M.E. Transdermal delivery of testosterone. Eur. J. Pharm. Biopharm. 2015, 92, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
- Lyseng-Williamson, K.A. Testosterone 2% gel (Testavan®, Testarzon®) in adult male hypogonadism: A profile of its use. Drugs Ther. Perspect. 2019, 35, 209–218. [Google Scholar] [CrossRef]
- Vinarov, Z.; Dobreva, P.; Tcholakova, S. Effect of surfactant molecular structure on Progesterone solubilization. J. Drug Deliv. Sci. Technol. 2018, 43, 44–49. [Google Scholar] [CrossRef]
- Doufène, K.; Basile, I.; Lebrun, A.; Pirot, N.; Escande, A.; Chopineau, J.; Devoisselle, J.M.; Bettache, N.; Aubert-Pouëssel, A. Vegetable oil-based hybrid microparticles as a green and biocompatible system for subcutaneous drug delivery. Int. J. Pharm. 2021, 592, 120070. [Google Scholar] [CrossRef] [PubMed]
- Wester, R.C.; Hui, X.; Maibach, H.I. In vivo human transfer of topical bioactive drug between individuals: Estradiol. J. Investig. Dermatol. 2006, 126, 2190–2193. [Google Scholar] [CrossRef]
- Konrádsdóttir, F.; Loftsson, T.; Sigfússon, S.D. Fish skin as a model membrane: Structure and characteristics. J. Pharm. Pharmacol. 2009, 61, 121–124. [Google Scholar] [CrossRef]
- Van Bocxlaer, K.; McArthur, K.-N.; Harris, A.; Alavijeh, M.; Braillard, S.; Mowbray, C.E.; Croft, S.L. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics 2021, 13, 516. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Cook, W.G.; Fenton, M.E. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: Philadelphia, PA, USA, 2012. [Google Scholar]
- Doelker, E. Cellulose derivatives. Adv. Polym. Sci. 1993, 107, 199–265. [Google Scholar] [CrossRef]
- Fujita, S.; Tazawa, T.; Kono, H. Preparation and Enzyme Degradability of Spherical and Water-Absorbent Gels from Sodium Carboxymethyl Cellulose. Gels 2022, 8, 321. [Google Scholar] [CrossRef]
- Makhlof, A.; Tozuka, Y.; Takeuchi, H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci. 2011, 42, 445–451. [Google Scholar] [CrossRef]
- Sokmen, N.; Bican, F.; Ayhan, F.; Ayhan, H. Chelating agent effect on the release of gentamicin from PEG-DA hydrogels. Hachette J. Biol. Chem. 2008, 36, 347–352. [Google Scholar]
- Ma, J.; Wang, H.; He, B.; Chen, J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001, 22, 331–336. [Google Scholar] [CrossRef]
- Moser, K.; Kriwet, K.; Naik, A.; Kalia, Y.N.; Guy, R.H. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 2001, 52, 103–112. [Google Scholar] [CrossRef]
- Ting, W.W.; Vest, C.D.; Sontheimer, R.D. Review of traditional and novel modalities that enhance the permeability of local therapeutics across the stratum corneum. Int. J. Dermatol. 2004, 43, 538–547. [Google Scholar] [CrossRef]
- Müller-Goymann, C.C.; Mitriaikina, S. Synergetic effects of isopropyl alcohol (IPA) and isopropyl myristate (IPM) on the permeation of betamethasone-17-valerate from semisolid pharmacopoeia bases. J. Drug Deliv. Sci. Technol. 2007, 17, 339–346. [Google Scholar]
- Das, S.; Gupta, K.S. A Comprehensive Review on Natural Products as Chemical Penetration Enhancer. J. Drug Deliv. Ther. 2021, 11, 176–187. [Google Scholar] [CrossRef]
- Funke, A.P.; Schiller, R.; Motzkus, H.W.; Günther, C.; Müller, R.H.; Lipp, R. Transdermal delivery of highly lipophilic drugs: In vitro fluxes of antiestrogens, permeation enhancers, and solvents from liquid formulations. Pharm. Res. 2002, 19, 661–668. [Google Scholar] [CrossRef]
- Aboofazeli, R.; Zia, H.; Needham, T.E. Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement. Drug Deliv. 2002, 9, 239–247. [Google Scholar] [CrossRef]
- Tanojo, H.; Geest, A.B.-V.; Bouwstra, J.A.; Junginger, H.E.; Boodé, H.E. In vitro human skin barrier perturbation by oleic acid: Thermal analysis and freeze fracture electron microscopy studies. Thermochim. Acta 1997, 293, 77–85. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618. [Google Scholar] [CrossRef]
- Som, I.; Bhatia, K.; Yasir, M. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied Sci. 2012, 4, 2–9. [Google Scholar] [CrossRef]
- Moghadam, S.H.; Saliaj, E.; Wettig, S.D.; Dong, C.; Ivanova, M.V.; Huzil, J.T.; Foldvari, M. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol. Pharm. 2013, 10, 2248–2260. [Google Scholar] [CrossRef]
- Kligman, A.M. Topical pharmacology and toxicology of dimethyl sulfoxide. 1. JAMA 1965, 193, 796–804. [Google Scholar] [CrossRef]
- Southwell, D.; Barry, B.W. Penetration enhancers for human skin: Mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine. J. Investig. Dermatol. 1983, 80, 507–514. [Google Scholar] [CrossRef]
- Ingólfsson, H.I.; Andersen, O.S. Alcohol’s effects on lipid bilayer properties. Biophys. J. 2011, 101, 847–855. [Google Scholar] [CrossRef]
- Gupta, R.; Badhe, Y.; Rai, B.; Mitragotri, S. Molecular mechanism of the skin permeation enhancing effect of ethanol: A molecular dynamics study. RSC Adv. 2020, 10, 12234–12248. [Google Scholar] [CrossRef]
- Berner, B.; Mazzenga, G.C.; Otte, J.H.; Steffens, R.J.; Juang, R.H.; Ebert, C.D. Ethanol: Water mutually enhanced transdermal therapeutic system II: Skin permeation of ethanol and nitroglycerin. J. Pharm. Sci. 1989, 78, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, P.A.; Barry, B.W.; Bouwstra, J.A.; Gooris, G.S. Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int. J. Pharm. 1996, 127, 9–26. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Urea analogues in propylene glycol as penetration enhancers in human skin. Int. J. Pharm. 1989, 56, 43–50. [Google Scholar] [CrossRef]
- Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal Drug Delivery Enhancement by Compounds of Natural Origin. Molecules 2011, 16, 10507–10540. [Google Scholar] [CrossRef]
- Ayala-Bravo, H.A.; Quintanar-Guerrero, D.; Naik, A.; Kalia, Y.N.; Cornejo-Bravo, J.M.; Ganem-Quintanar, A. Effects of sucrose oleate and sucrose laureate on in vivo human stratum corneum permeability. Pharm. Res. 2003, 20, 1267–1273. [Google Scholar] [CrossRef]
- Eichner, A.; Stahlberg, S.; Sonnenberger, S.; Lange, S.; Dobner, B.; Ostermann, A.; Schrader, T.E.; Hauß, T.; Schroeter, A.; Huster, D.; et al. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and 2H NMR experiments. Biochim. Biophys. Acta Biomembr. 2017, 1859, 745–755. [Google Scholar] [CrossRef]
- Dwibhashyam, V.S.; Ratna, V.J. Chemical penetration enhancers—An update. Indian Drugs. 2010, 47, 5–18. [Google Scholar]
- Prasanthi, D.; Lakshmi, P.K. Terpenes: Effect of lipophilicity in enhancing transdermal delivery of alfuzosin hydrochloride. J. Adv. Pharm. Technol. Res. 2012, 3, 216–223. [Google Scholar] [CrossRef]
- Špaglová, M.; Čuchorová, M.; Bartoníková, K.; Šimunková, V. Chemical penetration enhancers in topical application and their synergistic combination. Chem. Listy 2020, 114, 530–536. [Google Scholar]
- Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J. Control. Release 2008, 127, 59–69. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Ali, A. Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cinecole. Int. J. Biol. Macromol. 2014, 64, 144–149. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, Y.E.; Kim, B.; Park, C.W.; Sim, T.H.; Lee, T.-K.; Lee, J.-C.; Park, J.H.; Kim, J.-D.; Lee, H.S.; et al. Hair Growth is Promoted in Mouse Dorsal Skin by a Mixture of Platycladus orientalis (L.) Franco Leaf Extract and Alpha-Terpineol by Increasing Growth Factors and wnt3/β-Catenin. Nat. Prod. Commun. 2020, 15, 1934578X20951433. [Google Scholar] [CrossRef]
- Mueller, J.; Oliveira, J.S.L.; Barker, R.; Trapp, M.; Schroeter, A.; Brezesinski, G.; Neubert, R.H.H. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochim. Biophys. Acta. 2016, 1858, 2006–2018. [Google Scholar] [CrossRef]
- Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta. 2009, 1788, 2362–2373. [Google Scholar] [CrossRef]
- Jampilek, J.; Brychtova, K. Azone analogues: Classification, design, and transdermal penetration principles. Med. Res. Rev. 2012, 32, 907–947. [Google Scholar] [CrossRef]
- Jampílek, J. Azone® and Its Analogues as Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin/Heidelberg, Germany, 2015; pp. 69–105. [Google Scholar]
- Vasyuchenko, E.P.; Orekhov, P.S.; Armeev, G.A.; Bozdaganyan, M.E. CPE-DB: An Open Database of Chemical Penetration Enhancers. Pharmaceutics 2021, 13, 66. [Google Scholar] [CrossRef]
- Mesquita, S.D.M.; Freitas, Z.M.F.D.; Monteiro, M.S.D.S.B. Evaluation of transdermal gels in the delivery of hormone replacement therapy. RSD 2021, 10, e428101623891. [Google Scholar] [CrossRef]
- Zargar-Shoshtari, S.; Wahhabaghei, H.; Mehrsai, A.; Wen, J.; Alany, R. Transdermal delivery of bioidentical progesterone using dutasteride (A 5α-reductase inhibitor): A pilot study. J. Pharm. Pharm. Sci. 2010, 13, 626–636. [Google Scholar] [CrossRef]
- Holst, J.P.; Soldin, O.P.; Guo, T.; Soldin, S.J. Steroid hormones: Relevance and measurement in the clinical laboratory. Clin. Lab. Med. 2004, 24, 105–118. [Google Scholar] [CrossRef]
- Karashima, S.; Osaka, I. Rapidity and Precision of Steroid Hormone Measurement. J. Clin. Med. 2022, 11, 956. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Shen, W.J.; Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 2010, 7, 47. [Google Scholar] [CrossRef]
- Biga, L.M.; Dawson, S.; Harwell, A.; Hopkins, R.; Kaufmann, J.; LeMaster, M.; Matern, P.; Morrison-Graham, K.; Quick, D.; Runyeon, J. Chapter 17.2—Hormones. In Anatomy & Physiology; OpenStax: Houston, TX, USA, 2013. [Google Scholar]
- Liu, X.; Grice, J.E.; Lademann, J.; Otberg, N.; Trauer, S.; Patzelt, A.; Roberts, M.S. Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br. J. Clin. Pharmacol. 2011, 72, 768–774. [Google Scholar] [CrossRef]
- Rosso, J.D.; Zeichner, J.; Alexis, A.; Cohen, D.; Berson, D. Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J. Clin. Aesthet. Dermatol. 2016, 9, S2–S8. [Google Scholar]
- Jacyna, B.; Maciejewski, B.; Sznitowska, M. Hydrogels—Compounded dermatological preparations. Farm. Pol. 2020, 76, 57–62. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Chen, W.C.; Thornton, M.J.; Qin, K.; Rosenfield, R. Sexual hormones in human skin. Horm. Metab. Res. 2007, 39, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kao, J.S.; Garg, A.; Mao-Qiang, M.; Crumrine, D.; Ghadially, R.; Feingold, K.R.; Elias, P.M. Testosterone perturbs epidermal permeability barrier homeostasis. J. Investig. Dermatol. 2001, 116, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Kao, J.S.; Fluhr, J.W.; Man, M.Q.; Fowler, A.J.; Hachem, J.P.; Crumrine, D.; Ahn, S.K.; Brown, B.E.; Elias, P.M.; Feingold, K.R. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: Inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Investig. Dermatol. 2003, 120, 456–464. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Denda, M. Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br. J. Dermatol. 2007, 157, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Whiting, K.P.; Restall, C.J.; Brain, P.F. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci. 2000, 67, 743–757. [Google Scholar] [CrossRef]
Author, Year of Publication | Hormone, Dose | Polymer | Permeation Enhancers | Release Method/Diffusion Cell Type | Skin Model | Studied Time | Effects |
---|---|---|---|---|---|---|---|
Testosterone (TS) | |||||||
An et al., 2003 [31] | 30 mg/g (3% w/w) | polyvinyl alcohol, (PVA) with 2% PIB | Dodecylamine, HPE101, oleic acid, lauric acid | in vivo; in vitro/Keshary–Chien permeation cells | rat skin | 24 h | Dodecylamine (3%) increased the rate of skin penetration |
Heo et al., 2005 [32] | 10 mg/g (1% w/w) | HPMC 2910 | Propylene glycol, butylene glycol, diethanolamine, DMSO, NMP | in vivo; in vitro/Keshary-Chien permeation cells | rat skin, hairless mouse skin | 8 h | Combination of diethanolamine (2%) and NMP (6%) was the most effective among tested |
Pabla et al., 2007 [29] | 10 mg/g (1% w/w) | Carbopol Ultrez 10 (0.9% w/w) | Isopropyl alcohol (IPA) | in vitro Franz-diffusion cells | hairless guinea pig skin; cellulose ester membrane; CelgardR 2400 membrane | 12 h | IPA does not increase the bioavailability of API from hydroalcoholic gel preparations |
Olsson et al., 2014 [33] | 10 mg/g (1% w/w), 20 mg/g (2% w/w) | Carbopol 980 | ATD™ (ethanol, propylene glycol, diethylene glycol monoethyl ether) | in vivo | Caucasian men | 48 h | ATD™ increase bioavailability of TS vs. Testogel® |
Zidan et al., 2017 [30] | 16,2 mg/g (1.62% w/w) | Carbopol 980 | Isopropyl myristate (IPM) | in vitro Diffusion cells | human cadaver skin | 24 h | In the presence of 2% IPM+73.5% ethanol, an 11-fold increase in TS release was observed |
Bilal et al., 2018 [34] | 10 mg/g (1% w/w) | Carbopol 980 | Propylene glycol, limonene, oleic acid, transcutol | in vitro Vankel enhancer cell | polyvinylidene fluoride membranes (PVDF) 0.22 µm; rat skin | 24 h | Limonene and propylene glycol (15%) increase API penetration |
Progesterone (Prog) | |||||||
Valenta et al., 1997 [35] | 30 mg/g (3% w/w) | Carbopol 940 | Propylene glycol, ethanol, laurocapram | in vitro/ Franz-diffusion cells | hairless rat skin, ears of female pigs | 24 h | 10% laurocapram was to be the most efficient enhancer for Prog from carbopol hydroalcoholic gels |
Kählig et al., 2009 [36] | 10 mg/g (1% w/w) | Chitosan-EDTA, carrageenan, chitosan-glycolic acid | - | in vitro/ Franz-diffusion cells | porcine abdominal skin | 48 h | Chitosan-glycolic acid can be recommended for a transdermal application of hormone |
Matsui et al., 2015 [37] | 30 mg/g (3% w/w) | Carboxyvinylpolymer | PGDC, Oleth-7, Oleth-10, Oleth-20, 1,3-BG, Ceteth-20, Steareth-20, Beheneth20, BA, isopropyl myristate ethanol | in vivo, in vitro/ Franz-diffusion cells | dorsal skin of a 6-week-old male rat or rat abdominal skin | 24 h | The Oleth-20 and PGDC have the ability to maintain a high activity of Prog and high diffusivity or solubility of Prog in the epidermis |
Bassani et al., 2017 [38] | 50 mg/g (5% w/w) | VersaBase® Gel | - | in vitro/ Franz-diffusion cells | human trunk skin | 48 h | Prog in VersaBase®Gel is absorption through the skin |
Insulin (INS) | |||||||
Ostróżka-Cieślik et al., 2021 [39] | 1 mg/g (0.1% w/w) | Carbopol Ultrez 10, Carbopol Ultrez 30, methyl cellulose, glycerol ointment | - | in vitro/ enhancer cell | cellulose dialysis membrane Spectra/Por® 2 (MWCO of 12–14 kDa) | 10 h | Methyl cellulose-based hydrogel released API reaching 75% after 9 h |
Corticotropin (ACTH) | |||||||
Siemiradzka et al., 2021 [40] | 15 mg/g (1.5% w/w), 20 mg/g (2% w/w) | Glycerol ointment | Albumin | in vitro/enhancer cell or Franz-diffusion cells | cellulose dialysis membrane Spectra/Por® 2 (MWCO of 100 kDa) or porcine ear skin | 24 h | Albumin can delay or increase ACTH permeation |
β-Estradiol (ES) | |||||||
Vermeire et al., 1996 [41] | 0.6 mg/g (0.06% w/w) | Methocel™ K 100M (hydroxypropyl methylcellulose) | Sucrose laurate (5%, 15% w/w) | in vivo | male rabbits | 12 h | Sucrose laurate (15%) showed absorption enhancing properties and has some skin irritation potential. |
Monti et al., 2002 [42] | 10 mg/g (1% w/w) | Carbopol 1342 | Terpene containing essential oils: cajuput, cardamom, melissa, myrtle, niaouli (NIA), orange | Diffusion cells | hairless mouse skin | 30 h | 1.0% NIA significantly increased the estradiol transdermal flux. |
Barreiro-Iglesias et al., 2003 [43] | 40 mg/g (4% w/w) | Carbopol 934NF | Pluronic F-127, Tween 80, SDS, BkCl | Horizontal diffusion cells | cellulose acetate | not specified | Carbopol/surfactant aggregates: they enhance the solubility of hydrophobic drugs using low-surfactant proportions and they make it possible to control drug release rates. |
Hydrocortisone (HC) | |||||||
Bentley et al., 1997 [44] | 10 mg/g (1% w/w) | Poloxamer 407 | Urea, lecithin | Franz-diffusion cells | hairless mouse skin | 24 h | Lecithin in poloxamer gels can increase skin retention of hidrocortisone acetate. |
El-Kattan et al., 2000 [45] | 20 mg/g (2% w/w) | Hydroxypropyl methylcellulose (HPMC) | Terpene: terpinen-4-ol, verbenone, fenchone, carvone, menthone, α-terpineol, cineole, geraniol, thymol, cymene, d-limonene, nerolidol | Franz-diffusion cells | hairless mouse skin | 24 h | Positive correlation between the lipophilicity of the terpenes and the cumulative amount of hydrocortisone permeating through skin. |
Meler et al., 2013 [46] | 10 mg/g (1% w/w) | Methylcellulose, carboxymethylcellulose, Carbopol 934P, chitosan | 1,2-propylene glycol | Hanson diffusion chambers | semi-permeable membrane | 2.5 h | Prepared gels based on cellulose have a higher rate of diffusion than prepared with Carbopol 934 p. Addition of 1% chitosan affects the acceleration of the release. |
Szcześniak et al., 2013 [47] | 10 mg/g (1% w/w) | Carbopol 934P | 1,2-propylene glycol, N,N-dimethylacetamide, Tween 20, ethanol | Varian VK 7025 dissolution apparatus | semi-permeable membrane | 2.5 h | The value of the constant release rate increases in the presence of ethanol, Tween 20, and DMA. |
Hormones/ Molecular Weight | Solubility | Partition Coefficient (log Po/w) | Half-Life [min] | Commercial Preparations /Used Hydrogel | Bioavailability of the Hormone | References |
---|---|---|---|---|---|---|
Testosterone 288.4 Da | 40 mg/L at 37 °C 18–25 mg/L at 20 °C | 3.3 | 10–100 | Androgel™ (1% w/w; AbbVie, Inc.)/Carbopol 980 Androgel 1.62™ (1.62% w/w, AbbVie, Inc.)/Carbopol 980 Testim™ (1% w/w, Auxilium Pharmaceuticals)/Carbopol Vogelxo™ (1% w/w, Upsher-Smith Laboratories)/Carbopol Type B, Carbopol Type C Testogel® (1% w/w, Bayer Vital Gmbh)/Carbopol 980 Fortesta™ (2% w/w, Endo Pharmaceuticals)/Carbopol 1382 Fortigel™ (2% w/w, ProStrakan Ltd.)/Carbopol 1382 Tostrex™ (2% w/w, ProStrakan Ltd.)/Carbopol 1382 Tostran™ (2% w/w, ProStrakan Ltd.)/Carbopol 1382 Itnogen™ (2% w/w, ProStrakan Ltd.)/Carbopol 1382 Testavan® (2% w/w, Ferring Pharmaceuticals Ltd.)/Carbopol 980 | ~10–15% | [30,95,96,97] |
Progesterone 314.5 Da | Insoluble in water, sparingly soluble in acetone, ethanol: 0.125 g/mL | 3.9 | 5–20 | Crinone® (4% w/w or 8% w/w, Columbia Laboratories, United Kingdom)/Carbopol 974P (vaginal gel) Prochieve® (8% w/w, Fleet Laboratories Ltd.)/Carbopol 934P (vaginal gel) | ~20% | [96,98] |
Estradiol 272.4 Da | 0.399 mg/dL at 35 °C | 4.01 | ~60 | Divigel (0.1% w/w, Delfarma, Inpharm, Orion)/Carbopol 974 P Estreva (0.1% w/w, Theramex)/carboxy-polyvinyl polimer Elestrin (0.06% w/w, Meda Pharamceuticals)/Carbopol 940 Sandrena® (0.5% w/w, 1% w/w, Orion Pharma)/Carbopol 974 P EstroGel® (0.06% w/w, ASCEND Therapeutics)/Carbopol 934 P Oestrogel (0.06% w/w, Besins Healthcare)/Carbopol 940 | ~10% | [53,96,99,100] |
Hydrocortisone 362.5 Da | 320 mg/L at 25 °C | 1.61 | ~100 | Corticool™ (1% w/w, Tec Labs)/hypromellose Alcortin A (2% w/w, Novum Pharma, LLC)/Carbopol | NA | [101,102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A. The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers 2022, 14, 3307. https://doi.org/10.3390/polym14163307
Ostróżka-Cieślik A. The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers. 2022; 14(16):3307. https://doi.org/10.3390/polym14163307
Chicago/Turabian StyleOstróżka-Cieślik, Aneta. 2022. "The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs" Polymers 14, no. 16: 3307. https://doi.org/10.3390/polym14163307
APA StyleOstróżka-Cieślik, A. (2022). The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers, 14(16), 3307. https://doi.org/10.3390/polym14163307