Synthesis and Properties of Thermally Self-Healing PET Based Linear Polyurethane Containing Diels–Alder Bonds
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of DA Diol
2.3. Synthesis of PET-DA-PU
2.4. Synthesis of PET-DA-PU/Al/Na2SO4 Composite
2.5. Self-Healing Property
2.6. Characterization
3. Result and Discussion
3.1. Preparation and Characterization of PET-DA-PU
3.2. Glass Transition Temperature of PET-DA-PU
3.3. Self-Healing Property of PET-DA-PU
3.4. Thermal Reversibility of PET-DA-PU
3.5. Healing Behavior of PET-DA-PU Based Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Liu, N.; Mo, H.; Lu, X.; Wang, Y.; Xu, M.; Shu, Y. Facile preparation and properties of crosslinked copolyether elastomers with 1,2,3-triazole and urethane subunit via click polymerization. Chem. Open 2019, 8, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Li, Y.; Guo, Y.; Li, J.; Yang, R. Effect of morphology for ammonium dinitramide on the mechanical and combustion properties of composite propargyl-terminated copolyether propellant. Propellants Exp. Pyro. 2020, 45, 864–870. [Google Scholar] [CrossRef]
- Pal, Y.; Mahottamananda, S.N.; Palateerdham, S.K.; Subha, S.; Ingenito, A. Review on the regression rate-improvement techniques and mechanical performance of hybrid rocket fuels. Fire Phys. Chem. 2021, 1, 272–282. [Google Scholar] [CrossRef]
- Awad, S.A.; Khalaf, E.M. Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate–graphene particle composites. Bull. Mater. Sci. 2018, 41, 67–72. [Google Scholar] [CrossRef]
- Monti, M.; Scrivani, M.T.; Kociolek, I.; Larsen, Å.G.; Olafsen, K.; Lambertini, V. Enhanced impact strength of recycled PET/glass fiber composites. Polymers 2021, 13, 1471. [Google Scholar] [CrossRef]
- Mondadori, N.; Nunes, R.; Canto, L.; Zattera, A. Composites of recycled PET reinforced with short glass fiber. J. Thermoplast. Compos. Mater. 2012, 25, 747–764. [Google Scholar] [CrossRef]
- Cunha, B.; Mattos, E.; Rocco, J. Influence of storage time before casting on viscosities and mechanical properties of AP/HTPB/Al solid composite propellants. Fire Phys. Chem. 2022, 2, 50–55. [Google Scholar] [CrossRef]
- Junling, L.; Hua, F.; Duowang, T.; Fangyun, L.; Rong, C. Fracture behaviour investigation into a polymer-bonded explosive. Strain 2012, 48, 463–473. [Google Scholar] [CrossRef]
- Liu, C.; Thompson, D.G. Crack Initiation and Growth in PBX 9502 High Explosive Subject to Compression. J. Appl. Mech. Trans. ASME 2014, 81, 101004. [Google Scholar] [CrossRef]
- Murphy, E.B.; Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 2010, 35, 223–251. [Google Scholar] [CrossRef]
- Xia, D.; Wang, P.; Ji, X.; Khashab, N.M.; Sessler, J.L.; Huang, F. Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070–6123. [Google Scholar] [CrossRef] [PubMed]
- Sengezer, E.C.; Seidel, G.D. Real time In-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials. In Behavior and Mechanics of Multifunctional Materials and Composites, Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Las Vegas, NV, USA, 20–24 March 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9800, pp. 1–10. [Google Scholar]
- Scheiner, M.; Dickens, T.J.; Okoli, O. Progress towards self-healing polymers for composite structural applications. Polymer 2016, 83, 260–282. [Google Scholar] [CrossRef]
- Zhu, D.; Rong, M.; Zhang, M. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 2015, 49–50, 175–220. [Google Scholar] [CrossRef]
- Aida, T.; Meijer, E.W.; Stupp, S.I. Functional Supramolecular Polymers. Science 2012, 335, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, X.; O’Neill, S.J.K.; Wu, G.; Whitaker, D.J.; Li, J.; McCune, J.A.; Scherman, O.A. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 2022, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem.-Int. Ed. 2019, 58, 9682–9695. [Google Scholar] [CrossRef]
- Liu, Y.; Chuo, T. Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 2013, 4, 2194–2205. [Google Scholar] [CrossRef]
- Mangialetto, J.; Gorissen, K.; Vermeersch, L.; Van Mele, B.; Van den Brande, N.; De Vleeschouwer, F. Hydrogen-bond-assisted Diels-Alder kinetics or self-healing in reversible polymer networks? A combined experimental and theoretical study. Molecules 2022, 27, 1961. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Sanka, R.V.S.P.; Binder, W.H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J. 2020, 385, 123820. [Google Scholar] [CrossRef]
- Lu, C.; Guo, X.; Wang, C.; Wang, J.; Chu, F. Integration of metal-free ATRP and Diels-Alder reaction toward sustainable and recyclable cellulose-based thermoset elastomers. Carbohydr. Polym. 2020, 242, 116404. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, T.H.; Park, Y.I.; Nam, J.H.; Noh, S.M.; Cheong, I.W.; Kim, J.C. Influence of material properties on scratch-healing performance of polyacrylate-graft-polyurethane network that undergo thermally reversible crosslinking. Polymer 2017, 128, 135–146. [Google Scholar] [CrossRef]
- Liu, X.; Du, P.; Liu, L.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Kinetic study of Diels-Alder reaction involving in maleimide-furan compounds and linear polyurethane. Polym. Bull. 2013, 70, 2319–2335. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Li, J.; Luo, Y. Preparation and properties of semi-interpenetrating networks combined by thermoplastic polyurethane and a thermosetting elastomer. New J. Chem. 2018, 42, 3087–3096. [Google Scholar] [CrossRef]
- Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels-Alder reaction. Rsc. Adv. 2013, 3, 15475–15482. [Google Scholar] [CrossRef]
- Buonerba, A.; Speranza, V.; Capacchione, C.; Milione, S.; Grassi, A. Improvement of tensile properties, self-healing and recycle of thermoset styrene/2-vinylfuran copolymers via thermal triggered rearrangement of covalent crosslink. Eur. Polym. J. 2018, 99, 368–377. [Google Scholar] [CrossRef]
- Sugane, K.; Yoshioka, Y.; Shimasaki, T.; Teramoto, N.; Shibata, M. Self-healing 8-armed star-shaped epsilon-caprolactone oligomers dually crosslinked by the Diels-Alder and urethanization reactions. Polymer 2018, 144, 92–102. [Google Scholar] [CrossRef]
- Xu, M.; Lu, X.; Liu, N.; Zhang, Q.; Mo, H.; Ge, Z. Fluoropolymer/Glycidyl Azide Polymer (GAP) Block Copolyurethane as New Energetic Binders: Synthesis, Mechanical Properties, and Thermal Performance. Polymers 2021, 13, 2706. [Google Scholar] [CrossRef]
- Xu, M.; Yang, W.; Lu, X.; Mo, H.; Ge, Z. Cryogenic Mechanical Properties of GAP/PET Block Thermoplastic Elastomers. Chin. J. Explos. Propellants 2022, 45, 67–72. [Google Scholar]
- Zhang, W.; Li, J.; Luo, Y. Morphology and properties of novel thermoplastic polyurethane elastomer. Chin. J. Explos. Propellants 2010, 6, 39–42. [Google Scholar]
- Lee, H.-Y.; Cha, S.-H. Enhancement of self-healing property by introducing ethylene glycol group into thermally reversible Diels-Alder reaction based self-healable materials. Macromol. Res. 2017, 25, 640–647. [Google Scholar] [CrossRef]
- Jung, S.; Liu, J.T.; Hong, S.H.; Arunbabu, D.; Noh, S.M.; Oh, J.K. A new reactive polymethacrylate bearing pendant furfuryl groups: Synthesis, thermoreversible reactions, and self-healing. Polymer 2017, 109, 58–65. [Google Scholar] [CrossRef]
- Appuhamillage, G.A.; Reagan, J.C.; Khorsandi, S.; Davidson, J.R.; Voit, W.; Smaldone, R.A. 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction. Polym. Chem. 2017, 8, 2087–2092. [Google Scholar] [CrossRef]
- Lin, C.; Sheng, D.; Liu, X.; Xu, S.; Ji, F.; Dong, L.; Zhou, Y.; Yang, Y. NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels-Alder reaction. Polymer 2018, 140, 150–157. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, S.; Li, H.; Liu, J.; Su, C.; Song, H. One-pot synthesis of self-healable and recyclable ionogels based on polyamidoamine (PAMAM) dendrimers via Schiff base reaction. RSC Adv. 2017, 7, 38765–38772. [Google Scholar] [CrossRef]
- Lee, W.J.; Cha, S.H. Improvement of mechanical and self-healing properties for polymethacrylate derivatives containing maleimide modified graphene oxide. Polymers 2020, 12, 603. [Google Scholar] [CrossRef]
- Zirnstein, B.; Schulze, D.; Schartel, B. Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials 2019, 12, 1932. [Google Scholar] [CrossRef]
- Xiao, C.; Zhu, Y.; Chen, J.; Zhang, S. Synthesis of emulsion-templated macroporous materials via Diels-Alder polymerization. Polymer 2017, 110, 74–79. [Google Scholar] [CrossRef]
- Stirn, Z.; Rucigaj, A.; Krajnc, M. Innovative approach using aminomaleimide for unlocking phenolic diversity in high-performance maleimidobenzoxazine resins. Polymer 2017, 120, 129–140. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Zheng, Z.; Du, P. Polyether-maleimide-based crosslinked self- healing polyurethane with Diels-Alder bonds. J. Appl. Polym. Sci. 2015, 132, 41944–41952. [Google Scholar] [CrossRef]
- Luo, K.; Li, J.; Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Comb-shaped aromatic polyamide cross-linked by Diels-Alder chemistry: Towards recyclable and high-performance thermosets. Polymer 2018, 142, 33–42. [Google Scholar] [CrossRef]
- Sannikov, O.; Hanson, S.; Saunders, P.; Branch, K.L.; Merbouh, N. Introducing complex NMR mixtures at the undergraduate level: Analysis of the diels-alder reaction between methylcyclopentadiene and maleic anhydride (Part I). J. Lab. Chem. Educ. 2019, 7, 8–18. [Google Scholar]
- Moura, O.; Castro, T.; Franca, D.; Tavares, O.; Silva, C.; Pereira, M.; Grarcia, A. Spectroscopic techniques combined with chemometrics to study organic matter in tropical soils with different degrees of pedogenetic evolution. Química. Nova. 2021, 45, 40–47. [Google Scholar] [CrossRef]
- Nasresfahani, A.; Zelisko, P.M. Synthesis of a self-healing siloxane-based elastomer cross-linked via a furan-modified polyhedral oligomeric silsesquioxane: Investigation of a thermally reversible silicon-based cross-link. Polym. Chem. 2017, 8, 2942–2952. [Google Scholar] [CrossRef]
- Bode, S.; Enke, M.; Hernandez, M.; Bose, R.K.; Grande, A.M.; van der Zwaag, S.; Schubert, U.S.; Garcia, S.J.; Hager, M.D. Characterization of self-healing polymers: From macroscopic healing tests to the molecular mechanism. Self Health Mater. 2016, 273, 113–142. [Google Scholar]
Sample | E Modulus/MPa | Max Tensile Strength/MPa | Elongation at Max Stress/% | Elongation at Break/% |
---|---|---|---|---|
PET-DA-PU/Al/Na2SO4 composite | 1.72 | 0.82 | 138.8 | 945.8 |
PET-DA-PU/Al/Na2SO4 composite after repairation | 1.56 | 0.72 | 113 | 926.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Liu, N.; Mo, H.; Lu, X.; Dou, J.; Tan, B. Synthesis and Properties of Thermally Self-Healing PET Based Linear Polyurethane Containing Diels–Alder Bonds. Polymers 2022, 14, 3334. https://doi.org/10.3390/polym14163334
Xu M, Liu N, Mo H, Lu X, Dou J, Tan B. Synthesis and Properties of Thermally Self-Healing PET Based Linear Polyurethane Containing Diels–Alder Bonds. Polymers. 2022; 14(16):3334. https://doi.org/10.3390/polym14163334
Chicago/Turabian StyleXu, Minghui, Ning Liu, Hongchang Mo, Xianming Lu, Jinkang Dou, and Bojun Tan. 2022. "Synthesis and Properties of Thermally Self-Healing PET Based Linear Polyurethane Containing Diels–Alder Bonds" Polymers 14, no. 16: 3334. https://doi.org/10.3390/polym14163334
APA StyleXu, M., Liu, N., Mo, H., Lu, X., Dou, J., & Tan, B. (2022). Synthesis and Properties of Thermally Self-Healing PET Based Linear Polyurethane Containing Diels–Alder Bonds. Polymers, 14(16), 3334. https://doi.org/10.3390/polym14163334