Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review
Abstract
:1. Introduction
2. Automotive Plastics
2.1. Plastics from Non-Renewable Resources
2.2. Plastics from Renewable Resources
2.2.1. Bioplastics
2.2.2. Cellulosic Plant Fibers
2.2.3. Highly Biodegradable Polymers
2.3. Recyclable Plastics
2.4. Selecting Plastics for Automotive Applications
3. Environmental Issues
3.1. Candidate Raw Materials from Renewable Resources for the Automotive Industry
3.2. Challenges for the Reuse of Automotive Plastic Waste
3.3. Polymers in Electric Vehicles
3.4. Perspectives on Circular Economy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ABS | Acrylonitrile butadiene styrene |
ASA | Acrylonitrile styrene acrylate |
Bio-PA | Bio-polyamides |
CAGR | Compound annual growth rate |
EV | Electric vehicle |
HDPE | High-density polyethylene |
ICE | Internal combustion engine |
IEA | International Energy Agency |
LDPE | Low-density polyethylene |
ABS-g-MA | Maleic anhydride-grafted acrylonitrile butadiene styrene |
PL | Photoluminescence |
PBS | Poly butylene succinate |
PA | Polyamide |
PBT | Polybutylene terephthalate |
PC | Polycarbonate |
PE | Polyethylene |
PET | Polyethylene terephthalate |
PHA | Polyhydroxyalkanoates |
PHB | Polyhydroxybutyrate |
PLA | Polylactide acid |
PMMA | Polymethyl methacrylate |
POM | Polyoxymethylene |
PPS | Polyphenylene sulfide |
PP | Polypropylene |
PS | Polystyrene |
PTT | Polytrimethylene terephthalate |
PU | Polyurethane |
PUR | Polyurethanes |
PVC | Polyvinylchloride |
SMA | Styrene maleic anhydride |
SDS | Sustainable Development Scenario |
KIT | The Karlsruhe Institute of Technology |
TPA | Thermoplastic polyamide |
TPO | Thermoplastic polyolefins |
WAB | Waste automobile bumper |
References
- Economic Contributions. Available online: https://www.oica.net/category/economic-contributions (accessed on 10 July 2021).
- Griffin, M. The Future of Work in the Automotive Industry: The Need to Invest in People’s Capabilities and Decent and Sustainable Work; International Labour Office Publishing: Geneva, Switzerland, 2020. [Google Scholar]
- IEA Energy End Use and Efficiency Trends. Available online: https://www.iea.org/reports/energy-efficiency-indicators-overview/iea-energy-end-use-and-efficiency-trends (accessed on 10 July 2021).
- Diefenderfer, J.; Arora, V.; Singer, L.E. International Energy Outlook 2016 Liquid fuels. U.S. Energy Information Administration. DOE/EIA-0484 2016, 0484, 202–586. [Google Scholar]
- 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards. Available online: https://www.federalregister.gov/documents/2012/10/15/2012-21972/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel (accessed on 15 October 2012).
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Figueroa Meza, M.J.; Fulton, L.; Kobayashi, S. 8 Transport Coordinating Lead Authors: Lead Authors: Review Editors: Chapter Science Assistant: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Towoju, O.A.; Ishola, F.A. A case for the internal combustion engine powered vehicle. Energy Rep. 2020, 6, 315–321. [Google Scholar] [CrossRef]
- Ross, M. Fuel efficiency and the physics of automobiles. Contemp. Phys. 1997, 38, 381–394. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Lewis, G.M.; Keoleian, G.A. Effect of mass on multimodal fuel consumption in moving people and freight in the U.S. Transp. Res. Part D Transp. Environ. 2018, 63, 786–808. [Google Scholar] [CrossRef]
- Lewis, G.M.; Buchanan, C.A.; Jhaveri, K.D.; Sullivan, J.L.; Kelly, J.C.; Das, S.; Taub, A.I.; Keoleian, G.A. Green Principles for Vehicle Lightweighting. Environ. Sci. Technol. 2019, 53, 4063–4077. [Google Scholar] [CrossRef]
- Sperling, D.; Cannon, J.S. Reducing Climate Impacts in the Transportation Sector; Springer Publishing: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Ford. Sustainability report 2018/19; Ford Motor Company: Dearborn, MI, USA, 2019. [Google Scholar]
- Koffler, C.; Rohde-Brandenburger, K. On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int. J. Life Cycle Assess. 2010, 15, 128–135. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization. Environ. Sci. Technol. 2013, 47, 6089–6097. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Androsch, R. Industrial Applications of Poly (Lactic Acid); Springer International Publishing: Cham, Switzerland, 2018; pp. 177–219. [Google Scholar]
- Begum, S.A.; Rane, A.V.; Kanny, K. Applications of Compatibilized Polymer Blends in Automobile Industry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Adeniyi, A.; Agboola, O.; Sadiku, E.R.; Durowoju, M.O.; Olubambi, P.A.; Babul Reddy, A.; Ibrahim, I.D.; Kupolati, W.K. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; Chapter2–Thermoplastic-Thermoset Nanostructured Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–38. [Google Scholar]
- Patil, A.; Patel, A.; Purohit, R. An overview of Polymeric Materials for Automotive Applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Nickels, L. New innovations in automotive thermoplastics. Reinf. Plast. 2019, 63, 185–188. [Google Scholar] [CrossRef]
- Biron, M. Thermoplastics and Thermoplastic Composites; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Szeteiová, K. Plastic in Automotive Markets Today. Adv. Mater. Process. 2000, 158, 50–52. [Google Scholar]
- Kroll, L.; Meyer, M.; Nendel, W.; Schormair, M. Highly rigid assembled composite structures with continuous fiber-reinforced thermoplastics for automotive applications. Procedia Manuf. 2019, 33, 224–231. [Google Scholar] [CrossRef]
- Park, C.-K.; Kan, C.-D.; Hollowell, W.T.; Hill, S.I. Investigation of Opportunities for Lightweight Vehicles Using Advanced Plastics and Composites. Natl. Highw. Traffic Saf. Adm. 2012, 416. [Google Scholar]
- Vieyra, H.; Aguilar-Méndez, M.A.; San Martín-Martínez, E. Study of biodegradation evolution during composting of polyethylene-starch blends using scanning electron microscopy. J. Appl. Polym. Sci. 2013, 127, 845–853. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streita, W.R. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 2019, 85, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieyra, H.; San Martín-Martínez, E.; Juárez, E.; Figueroa-Lõpez, U.; Aguilar-Méndez, M.A. Biodegradation process of a blend of thermoplastic unripe banana flour - Polyethylene under composting: Identification of the biodegrading agent. J. Appl. Polym. Sci. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.-J. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Blackburn, R. Sustainable Textiles. Life Cycle and Environmental Impact; Blackburn, R.S., Ed.; Woodhead Publishing Limited: Oxford, UK, 2009. [Google Scholar]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Babu Padamati, R.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Reddy, H.N.J. Application of Sisal, Bamboo, Coir and Jute Natural Composites in Structural Upgradation. Int. J. Innov. Manag. Technol. 2011, 2, 186–191. [Google Scholar] [CrossRef]
- Sain, M.; Panthapulakkal, S. Green fibre thermoplastic composites. In Green Composites: Polymer Composites and the Environment; Woodhead Publishing Limited: Cambridge, UK, 2004; pp. 181–206. [Google Scholar]
- Fogorasi, M.S.; Barbu, I. The potential of natural fibres for automotive sector-Review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012044. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewicz, D. Design Drivers for Enhanced Crash Performance of Automotive Cfrp. In Proceedings of the 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Seoul, Korea, 27–30 May 2013. [Google Scholar]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2019, 35, 1169–1209. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Roy, P.; Defersha, F.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Evaluation of the life cycle of an automotive component produced from biocomposite. J. Clean. Prod. 2020, 273, 123051. [Google Scholar] [CrossRef]
- Marur, S. Plastics Application Technology for Safe and Lightweight Automobiles; SAE International: New York, NY, USA, 2013. [Google Scholar]
- Corbière-Nicollier, T.; Gfeller Laban, B.; Lundquist, L.; Leterrier, Y.; Månson, J.A.E.; Jolliet, O. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour. Conserv. Recycl. 2001, 33, 267–287. [Google Scholar] [CrossRef]
- Adesina, O.T.; Jamiru, T.; Sadiku, E.R.; Ogunbiyi, O.F.; Beneke, L.W. Mechanical evaluation of hybrid natural fibre–reinforced polymeric composites for automotive bumper beam: A review. Int. J. Adv. Manuf. Technol. 2019, 103, 1781–1797. [Google Scholar] [CrossRef]
- Dunne, R.; Desai, D.; Sadiku, R.; Jayaramudu, J. A review of natural fibres, their sustainability and automotive applications. J. Reinf. Plast. Compos. 2016, 35, 1041–1050. [Google Scholar] [CrossRef]
- Volova, T.G.; Boyandin, A.N.; Vasiliev, A.D.; Karpov, V.A.; Prudnikova, S.V.; Mishukova, O.V.; Boyarskikh, U.A.; Filipenko, M.L.; Rudnev, V.P.; Bá Xuân, B.; et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym. Degrad. Stab. 2010, 95, 2350–2359. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Zhang, J.; Wolcott, M.P. Mechanical performance of polyhydroxyalkanoate (PHA)-based biocomposites. In Biocomposites: Design and Mechanical Performance; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 39–52. [Google Scholar]
- Gerrard, J.; Kandlikar, M. Is European end-of-life vehicle legislation living up to expectations? Assessing the impact of the ELV Directive on “green” innovation and vehicle recovery. J. Clean. Prod. 2007, 15, 17–27. [Google Scholar] [CrossRef]
- Carrasco, F.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chem. Eng. J. 2011, 178, 451–460. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, M.P.; Samper, M.D.; López, J.; Jiménez, A. Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014, 22, 460–470. [Google Scholar] [CrossRef]
- Wu, B.; Xu, P.; Yang, W.; Hoch, M.; Dong, W.; Chen, M.; Bai, H.; Ma, P. Super-Toughened Heat-Resistant Poly(lactic acid) Alloys By Tailoring the Phase Morphology and the Crystallization Behaviors. J. Polym. Sci. 2020, 58, 500–509. [Google Scholar] [CrossRef]
- OECD. Future Prospects for Industrial Biotechnology; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Finding Sustainability in Surprising Places. Available online: https://corporate.ford.com/articles/sustainability/agave.html (accessed on 8 July 2021).
- Ford. Helping Build a Better World 2022; Ford Motor Company: Dearborn, MI, USA, 2022. [Google Scholar]
- Toyota. Environmental Report 2020; Toyota-cho: Toyota City, Japan, 2020. [Google Scholar]
- Allred, R.E.; Busselle, L.D. Tertiary Recycling of Automotive Plastics and Composites. J. Thermoplast. Compos. Mater. 2000, 13, 92–101. [Google Scholar] [CrossRef]
- Tarantili, P.A.; Mitsakaki, A.N.; Petoussi, M.A. Processing and properties of engineering plastics recycled from waste electrical and electronic equipment (WEEE). Polym. Degrad. Stab. 2010, 95, 405–410. [Google Scholar] [CrossRef]
- Hou, P.; Xu, Y.; Taiebat, M.; Lastoskie, C.; Miller, S.A.; Xu, M. Life cycle assessment of end-of-life treatments for plastic film waste. J. Clean. Prod. 2018, 201, 1052–1060. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balart, R.; Sánchez, L.; López, J.; Jiménez, A. Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrileebutadieneestyrene mixtures from waste electric and electronic equipment. Polym. Degrad. Stab. 2005, 91, 527–534. [Google Scholar] [CrossRef]
- Farzadfar, A.; Khorasani, S.N.; Khalili, S. Blends of recycled polycarbonate and acrylonitrile-butadiene-styrene: Comparing the effect of reactive compatibilizers on mechanical and morphological properties. Polym. Int. 2014, 63, 145–150. [Google Scholar] [CrossRef]
- Torun, A.R.; Kaya, Ş.H.; Choupani, N. Evaluation of recycled Al-LDPE-Al sandwich panels as ballistic protection material. Green Mater. 2020, 8, 194–202. [Google Scholar] [CrossRef]
- Cholake, S.T.; Rajarao, R.; Henderson, P.; Rajagopal, R.R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 2017, 151, 163–171. [Google Scholar] [CrossRef]
- Rajagopal, R.R.; Rajarao, R.; Cholake, S.T.; Sahajwalla, V. Sustainable composite panels from non-metallic waste printed circuit boards and automotive plastics. J. Clean. Prod. 2017, 144, 470–481. [Google Scholar] [CrossRef]
- Cosate de Andrade, M.F.; Souza, P.M.S.; Cavalett, O.; Morales, A.R. Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J. Polym. Environ. 2016, 24, 372–384. [Google Scholar] [CrossRef]
- McKeown, P.; Román-Ramírez, L.A.; Bates, S.; Wood, J.; Jones, M.D. Zinc Complexes for PLA Formation and Chemical Recycling: Towards a Circular Economy. ChemSusChem 2019, 12, 5233–5238. [Google Scholar] [CrossRef]
- Atakan, R.; Sezer, S.; Karakas, H. Development of nonwoven automotive carpets made of recycled PET fibers with improved abrasion resistance. J. Ind. Text. 2020, 49, 835–857. [Google Scholar] [CrossRef]
- Audi. Audi Report 2020; Audi: Ingolstadt, Germany, 2021. [Google Scholar]
- Ansys Granta EduPack. Available online: https://www.ansys.com/products/materials/granta-edupack (accessed on 4 August 2022).
- Fentahun, M.A.; Savas, M.A. Materials Used in Automotive Manufacture and Material Selection Using Ashby Charts. Int. J. Mater. Eng. 2018, 8, 40–54. [Google Scholar] [CrossRef]
- Stoycheva, S.; Marchese, D.; Paul, C.; Padoan, S.; Juhmani, A.S.; Linkov, I. Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry. J. Clean. Prod. 2018, 187, 257–272. [Google Scholar] [CrossRef]
- Bouzouita, A.; Samuel, C.; Notta-Cuvier, D.; Odent, J.; Lauro, F.; Dubois, P.; Raquez, J.-M. Design of highly tough poly(l-lactide)-based ternary blends for automotive applications. J. Appl. Polym. Sci. 2016, 133, 43402. [Google Scholar] [CrossRef]
- Mihora, D.J.; Ramamurthy, A.C. Friction induced damage: Preliminary numerical analysis of stresses within painted automotive plastics induced by large curvature counterfaces. Wear 1997, 203–204, 362–374. [Google Scholar] [CrossRef]
- Holmes, M. Biocomposites take natural step forward: Applications for biocomposites and the use of natural fiber reinforcements are increasing. Reinforced Plastics looks at a number of examples. Reinf. Plast. 2019, 63, 194–201. [Google Scholar] [CrossRef]
- Lizymol, P.P.; Thomas, S. Thermal behaviour of polymer blends: A comparison of the thermal properties of miscible and immiscible systems. Polym. Degrad. Stab. 1993, 41, 59–64. [Google Scholar] [CrossRef]
- Takahashi, S.; Okada, H.; Nobukawa, S.; Yamaguchi, M. Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene-vinyl acetate copolymer. Eur. Polym. J. 2012, 48, 974–980. [Google Scholar] [CrossRef]
- Palm, E.; Nilsson, L.J.; Åhman, M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J. Clean. Prod. 2016, 129, 548–555. [Google Scholar] [CrossRef] [Green Version]
- IEA. The Future of Petrochemicals. Available online: https://www.iea.org/reports/the-future-of-petrochemicals (accessed on 10 November 2021).
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [Green Version]
- IEA. Iron & Steel. Available online: https://www.iea.org/fuels-and-technologies/iron-steel (accessed on 10 November 2021).
- Alcoa. Alcoa 2019 Annual Report; Alcoa: Pittsburgh, PA, USA, 2019. [Google Scholar]
- Cherubini, F.; Strømman, A.H. Chemicals from lignocellulosic biomass: Opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefin. 2011, 5, 548–561. [Google Scholar] [CrossRef]
- Fitch, P.E.; Cooper, J.S. Life cycle energy analysis as a method for material selection. J. Mech. Des. Trans. ASME 2004, 126, 798–804. [Google Scholar] [CrossRef]
- Azapagic, A. Developing a framework for sustainable development indicators for the mining and minerals industry. J. Clean. Prod. 2004, 12, 639–662. [Google Scholar]
- Karthik, T.; Rathinamoorthy, R. Sustainable synthetic fibre production. In Sustainable Fibres and Textiles; Woodhead Publishing Limited: Cambridge, UK, 2017; pp. 191–240. [Google Scholar]
- Collias, D.I.; Harris, A.M.; Nagpal, V.; Cottrell, I.W.; Schultheis, M.W. Biobased terephthalic acid technologies: A literature review. Ind. Biotechnol. 2014, 10, 91–105. [Google Scholar] [CrossRef]
- Shelke, N.B.; Nagarale, R.K.; Kumbar, S.G. Polyurethanes. In Natural and Synthetic Biomedical Polymers; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 123–144. [Google Scholar]
- Pascault, J.P.; Höfer, R.; Fuertes, P. Mono-, Di-, and Oligosaccharides as Precursors for Polymer Synthesis; Elsevier B.V.: Amsterdam, The Netherlands, 2012; Volume 10. [Google Scholar]
- Eriksen, M.K.; Damgaard, A.; Boldrin, A.; Astrup, T.F. Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste. J. Ind. Ecol. 2019, 23, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Prado, K.S.; Strangl, M.; Pereira, S.R.; Tiboni, A.R.; Ortner, E.; Spinacé, M.A.S.; Buettner, A. Odor characterization of post-consumer and recycled automotive polypropylene by different sensory evaluation methods and instrumental analysis. Waste Manag. 2020, 115, 36–46. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Sun, Y.; Wang, X.; Li, M.; Pang, S.; Ruan, R.; Ragauskas, A.J.; Ok, Y.S.; Tsang, D.C.W. Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons. J. Clean. Prod. 2021, 309, 127469. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, M.; Chang, G.; Hu, X.; Guo, Q. A composite obtained from waste automotive plastics and sugarcane skin flour: Mechanical properties and thermo-chemical analysis. Powder Technol. 2019, 347, 27–34. [Google Scholar] [CrossRef]
- Schweizer, S.; Becker-Staines, A.; Tröster, T. Separation and reclamation of automotive hybrid structures made of metal and fibre-reinforced plastic. Waste Manag. 2020, 115, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, G.F.; Ardolino, F.; Arena, U. Can plastics from end-of-life vehicles be managed in a sustainable way? Sustain. Prod. Consum. 2022, 29, 115–127. [Google Scholar] [CrossRef]
- Martinez Sanz, V.; Morales Serrano, A.; Schlummer, M. A mini-review of the physical recycling methods for plastic parts in end-of-life vehicles. Waste Manag. Res. 2022. [Google Scholar] [CrossRef]
- Duval, D.; MacLean, H.L. The role of product information in automotive plastics recycling: A financial and life cycle assessment. J. Clean. Prod. 2007, 15, 1158–1168. [Google Scholar] [CrossRef]
- Martins, L.S.; Guimarães, L.F.; Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manage. 2021, 295, 113091. [Google Scholar] [CrossRef] [PubMed]
- Bobeth, S.; Kastner, I. Buying an electric car: A rational choice or a norm-directed behavior? Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 236–258. [Google Scholar] [CrossRef]
- Spreafico, C. Can modified components make cars greener? A life cycle assessment. J. Clean. Prod. 2021, 307, 127190. [Google Scholar] [CrossRef]
- Electric Vehicle Polymers - Global Market Trajectory & Analytics. Available online: https://www.researchandmarkets.com/reports/5302718/electric-vehicle-polymers-global-market (accessed on 14 February 2022).
- $52.5 Bn Electric Vehicle (Car) Polymers Market-Global Forecast to 2024. Available online: https://www.globenewswire.com/news-release/2019/06/19/1871401/0/en/52-5-Bn-Electric-Vehicle-Car-Polymers-Market-Global-Forecast-to-2024.html (accessed on 20 January 2022).
- Amasawa, E.; Hasegawa, M.; Yokokawa, N.; Sugiyama, H.; Hirao, M. Environmental performance of an electric vehicle composed of 47% polymers and polymer composites. Sustain. Mater. Technol. 2020, 25, e00189. [Google Scholar] [CrossRef]
- Girijappa, Y.G.T.; Ayyappan, V.; Puttegowda, M.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Plastics in Automotive Applications. Ref. Modul. Mater. Sci. Mater. Eng. 2020, 1–11. [Google Scholar] [CrossRef]
- Jochem, E.; Reitze, F. Material Efficiency and Energy Use; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Mulvaney, D.; Richards, R.M.; Bazilian, M.D.; Hensley, E.; Clough, G.; Sridhar, S. Progress towards a circular economy in materials to decarbonize electricity and mobility. Renew. Sustain. Energy Rev. 2021, 137, 110604. [Google Scholar] [CrossRef]
- Devasahayam, S.; Bhaskar Raju, G.; Mustansar Hussain, C. Utilization and recycling of end of life plastics for sustainable and clean industrial processes including the iron and steel industry. Mater. Sci. Energy Technol. 2019, 2, 634–646. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Nechifor, V.; Freire-González, J.; Calzadilla, A. Economy-wide rebound makes UK’s electric car subsidy fall short of expectations. Appl. Energy 2021, 297, 117138. [Google Scholar] [CrossRef]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes—The environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Kanciak, W.; Barczewski, M.; Barczewski, R.; Regulski, R.; Sędziak, D.; Jędryczka, C. Recycling of plastics from cable waste from automotive industry in poland as an approach to the circular economy. Polymers 2021, 13, 3845. [Google Scholar] [CrossRef] [PubMed]
- Degli Esposti, M.; Morselli, D.; Fava, F.; Bertin, L.; Cavani, F.; Viaggi, D.; Fabbri, P. The role of biotechnology in the transition from plastics to bioplastics: An opportunity to reconnect global growth with sustainability. FEBS Open Bio. 2021, 11, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Laoutid, F.; Lafqir, S.; Toncheva, A.; Dubois, P. Valorization of recycled tire rubber for 3d printing of abs-and tpo-based composites. Materials 2021, 14, 5889. [Google Scholar] [CrossRef] [PubMed]
Component | Types of Polymers |
---|---|
Bumpers and fascia systems | PS, ABS, PC/PBT, PP, PA, PU, TPO |
Seating | ABS, PA, PP |
Instrument panels | ABS, PC, ABS/PC, PP |
Fuel systems | POM, PA, PBT |
Under hood components | PA, PBT |
Interior trim | ABS, PET, POM |
Electrical components | PBT, PA |
Exterior trim | PS, PVC, ABS, PA, PBT, POM, ASA |
Lighting systems | PC, PBT, ABS, PMMA |
Upholstery | ABS, PU |
Liquid reservoirs, cooling, battery carriers | PA |
Wheel covers | ABS |
Body parts | ABS |
Tires | PA |
Parts of engine | PA, phenolic resins |
Manufacturer | Parts |
---|---|
Audi | Seat back, side, and back door panel, boot lining, hat rack, spare-tire lining |
Citroen | Interior door paneling |
BMW | Door panels, headliner panel, boot lining, seat back, noise insulation panels, molded foot well lining |
Lotus | Body panels, spoiler, seats, interior carpets |
Fiat | Door panel |
Opel | Instrumental panel, headliner panel, door panels, pillar cover panel |
Peugeot | Front and rear door panels |
Rover | Insulation, rear storage shelf/panel |
Toyota | Door panels, seat backs, floor mats, spare tire cover |
Volkswagen | Door panel, seat back, boot-lid finish panel, boot-liner |
Mitsubishi | Cargo area floor, door panels, instrumental panels |
Daimler-Benz | Door panels, windshield/dashboard, business table, pillar cover panel, glove box, instrumental panel support, insultation, molding rod/apertures, seat backrest panel, trunk panel, seat surface/backrest, internal engine cover, engine insulation, sun visor, bumper, wheel box, roof cover |
Honda | Cargo area |
Volvo | Seat padding, natural foams, cargo floor tray |
General Motors | Seat backs, cargo area floor |
Saturn | Package trays and door panel |
Ford | Floor trays, door panels, B-piller, boot liner |
Recycled Polymer | Estimated Cost a | Impact on the Environment b | Efficiency of the Recycling Process c |
---|---|---|---|
ABS (general-purpose and impact-modified, injectable) | + | + | + + + |
ABS + PVC, ABS + PC (flame-retardant) | + | + + | + |
PA66 (flame-retardant) | + + | + + + | + |
PA410 (impact-modified) | + + + | + + | + |
PA + ABS, PA + PPE (injectable) | + + | + + + | + |
PA66–40 mineral-filled | + | + + | + |
PBT (general-purpose, injectable) | + | + + | + |
PBT + PC (flame-retardant) | + | + + + | + |
PC + PMMA (flame-retardant) | + + | + + | + |
PP20Talc | + | + | + |
PP (impact-modified, UV-stabilized, flame-retardant) | + | + | + + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieyra, H.; Molina-Romero, J.M.; Calderón-Nájera, J.d.D.; Santana-Díaz, A. Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers 2022, 14, 3412. https://doi.org/10.3390/polym14163412
Vieyra H, Molina-Romero JM, Calderón-Nájera JdD, Santana-Díaz A. Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers. 2022; 14(16):3412. https://doi.org/10.3390/polym14163412
Chicago/Turabian StyleVieyra, Horacio, Joan Manuel Molina-Romero, Juan de Dios Calderón-Nájera, and Alfredo Santana-Díaz. 2022. "Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review" Polymers 14, no. 16: 3412. https://doi.org/10.3390/polym14163412
APA StyleVieyra, H., Molina-Romero, J. M., Calderón-Nájera, J. d. D., & Santana-Díaz, A. (2022). Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers, 14(16), 3412. https://doi.org/10.3390/polym14163412