Finite Element Study of PEEK Materials Applied in Post-Retained Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of the Geometric Models and Study Design
2.2. Finite Element Analysis (FEA)
3. Results
4. Discussion
5. Conclusions
- Compared with traditional posts, the CFR-PEEK and pure PEEK posts could both reduce the risk of debonding and vertical root fracture. However, the biomechanical behavior of the carbon fiber-reinforced CFR-PEEK restorations was the closest to dentin, no matter if it was used as a prefabricated post or customized post. Therefore, the CFR-PEEK post could be more suitable to restore massive tooth defects;
- Compared with CFR-PEEK, the pure PEEK post would increase the stress of resin core when used as a prefabricated post and is probably unable to withstand bite force. Pure PEEK needs filler reinforcement to be used for post-retained restoration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asmussen, E.; Peutzfeldt, A.; Heitmann, T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J. Dent. 1999, 27, 275–278. [Google Scholar] [CrossRef]
- Lanza, A.; Aversa, R.; Rengo, S.; Apicella, D.; Apicella, A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent. Mater. 2005, 21, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Akkayan, B.; Gülmez, T. Resistance to fracture of endodontically treated teeth restored with different post systems. J. Prosthet Dent. 2002, 87, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Shin, J.; Kim, J.; Kim, J.; Lee, W.; Shin, S.; Lee, J. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis. Biomed. Res. Int. 2017, 2017, 1373127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, T.A.; Barber, M. Direct or indirect post crowns to restore compromised teeth: A review of the literature. Brit. Dent. J. 2018, 224, 413–418. [Google Scholar] [CrossRef]
- Figueiredo, F.E.D.; Martins-Filho, P.R.S.; Faria-e-Silva, A.L. Do Metal Post–retained Restorations Result in More Root Fractures than Fiber Post–retained Restorations? A Systematic Review and Meta-analysis. J. Endodont. 2015, 41, 309–316. [Google Scholar] [CrossRef]
- Bittner, N.; Hill, T.; Randi, A. Evaluation of a one-piece milled zirconia post and core with different post-and-core systems: An in vitro study. J. Prosthet. Dent. 2010, 103, 369–379. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Shetty, S.; Coutinho, I. Factors determining post selection: A literature review. J. Prosthet. Dent. 2003, 90, 556–562. [Google Scholar] [CrossRef]
- Goracci, C.; Ferrari, M. Current perspectives on post systems: A literature review. Aust. Dent. J. 2011, 56, 77–83. [Google Scholar] [CrossRef]
- Liu, P.; Deng, X.; Wang, X. Use of a CAD/CAM-fabricated glass fiber post and core to restore fractured anterior teeth: A clinical report. J. Prosthet. Dent. 2010, 103, 330–333. [Google Scholar] [CrossRef]
- Drummond, J.L.; Bapna, M.S. Static and cyclic loading of fiber-reinforced dental resin. Dent. Mater. 2003, 19, 226–231. [Google Scholar] [CrossRef]
- Meira, J.B.C.; Espósito, C.O.M.; Quitero, M.F.Z.; Poiate, I.A.V.P.; Pfeifer, C.S.C.; Tanaka, C.B.; Ballester, R.Y. Elastic modulus of posts and the risk of root fracture. Dent. Traumatol. 2009, 25, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Ona, M.; Wakabayashi, N.; Yamazaki, T.; Takaichi, A.; Igarashi, Y. The influence of elastic modulus mismatch between tooth and post and core restorations on root fracture. Int. Endod. J. 2013, 46, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [Green Version]
- de Ruiter, L.; Janssen, D.; Briscoe, A.; Verdonschot, N. The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- de Ruiter, L.S.S.; Cowie, R.M.S.S.; Jennings, L.M.S.S.; Briscoe, A.S.S.; Janssen, D.S.S.; Verdonschot, N.S.S. The Effects of Cyclic Loading and Motion on the Implant-Cement Interface and Cement Mantle of PEEK and Cobalt-Chromium Femoral Total Knee Arthroplasty Implants: A Preliminary Study. Materials 2020, 13, 3323. [Google Scholar] [CrossRef]
- Wang, H. Measurement and statistics of human teeth in China. Chin. J. Stomatol. 1959, 7, 149–155. [Google Scholar]
- Eser, A.; Ccedil, K.; Ccedil, A.A.; Eckert, S.; Cehreli, M.C. Nonlinear finite element analysis versus ex vivo strain gauge measurements on immediately loaded implants. Int. J. Oral Maxillofac. Implant. 2009, 24, 439–446. [Google Scholar]
- Mahmoudi, M.; Saidi, A.R.; Amini, P.; Hashemipour, M.A. Influence of inhomogeneous dental posts on stress distribution in tooth root and interfaces: Three-dimensional finite element analysis. J. Prosthet. Dent. 2017, 118, 742–751. [Google Scholar] [CrossRef]
- Zhang, X.; Han, D.; Zhu, Q.; Wang, J.; Sun, H. Fiber post-and-core crown or onlay for restoration choice of mandibular first premolar with large defect:A three-dimensional finite element analysis. Chin. J. Conserv. Dent. 2018, 28, 265–269. [Google Scholar]
- Veríssimo, C.; Simamoto Júnior, P.C.; Soares, C.J.; Noritomi, P.Y.; Santos-Filho, P.C.F. Effect of the crown, post, and remaining coronal dentin on the biomechanical behavior of endodontically treated maxillary central incisors. J. Prosthet. Dent. 2014, 111, 234–246. [Google Scholar]
- Uddanwadiker, R.V.; Padole, P.M.; Arya, H. Effect of variation of root post in different layers of tooth: Linear vs. nonlinear finite element stress analysis. J. Biosci. Bioeng. 2007, 104, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarot, J.R.; Contar, C.M.M.; Cruz, A.C.C.D.; de Souza Magini, R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J. Mater. Sci-Mater. M 2010, 21, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.D.; Abou-Emara, M.; Spintig, T.; Lackmann, J.; Müller, W.D. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J. Biomech. 2015, 48, 1–7. [Google Scholar] [CrossRef]
- Keul, C.; Liebermann, A.; Schmidlin, P.R.; Roos, M.; Sener, B.; Stawarczyk, B. Influence of PEEK Surface Modification on Surface Properties and Bond Strength to Veneering Resin Composites. J. Adhes. Dent. 2014, 16, 383–392. [Google Scholar]
- Kern, M.; Lehmann, F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK). Dent. Mater. 2012, 28, 1280–1283. [Google Scholar] [CrossRef]
- Guimaraes, J.C.; Guimaraes, S.G.; Brandao, D.L.; Horn, F.; Narciso, B.L.; Monteiro, S.J.; Belli, R. Stress amplifications in dental non-carious cervical lesions. J. Biomech. 2014, 47, 410–416. [Google Scholar] [CrossRef]
- Chang, Y.; Lee, H.; Lin, C. Early resin luting material damage around a circular fiber post in a root canal treated premolar by using micro-computerized tomographic and finite element sub-modeling analyses. J. Mech. Behav. Biomed. 2015, 51, 184–193. [Google Scholar] [CrossRef]
- Vinothkumar, T.S.; Kandaswamy, D.; Chanana, P. CAD/CAM fabricated single-unit all-ceramic post-core-crown restoration. J. Conserv. Dent. 2011, 14, 86–89. [Google Scholar] [CrossRef]
- Eskitaşcıoğlu, G.; Belli, S.; Kalkan, M. Evaluation of Two Post Core Systems Using Two Different Methods (Fracture Strength Test and a Finite Elemental Stress Analysis). J. Endodont. 2002, 28, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endodont. 2018, 44, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Sterzenbach, G.; Dietrich, T.; Bitter, K.; Frankenberger, R.; von Stein-Lausnitz, M. Dentin-like versus Rigid Endodontic Post: 11-year Randomized Controlled Pilot Trial on No-wall to 2-wall Defects. J. Endodont 2017, 43, 1770–1775. [Google Scholar] [CrossRef] [PubMed]
- Shekar, R.I.; Kumar, M.N.S.; Rao, P.M.D.; Yaakob, Z.; Kotresh, T.M.; Hatna, S.; Chandrakala, H.N. Studies on the composites produced from co-weaved poly ether ether ketone and glass fiber fabric. J. Compos. Mater. 2011, 45, 741–749. [Google Scholar] [CrossRef]
- Padaki, N.V.; Alagirusamy, R.; Deopura, B.L.; Sugun, B.S.; Fangueiro, R. Low velocity impact behaviour of textile reinforced composites. Indian J. Fibre Text. Res. 2008, 33, 189–202. [Google Scholar]
Material | Young’s Modulus (Gpa) | Poisson Ratio | Reference No. |
---|---|---|---|
Enamel | 84.1 | 0.33 | [22] |
Dentin | 16.8 | 0.31 | [4] |
Pulp | 0.02 | 0.45 | [4] |
Periodontal ligament | 0.069 | 0.45 | [4] |
Cortical bone | 13.7 | 0.3 | [4] |
Cancellous bone | 1.37 | 0.3 | [4] |
Ceramic crown | 62.0 | 0.3 | [4] |
Resin cement | 5.0 | 0.3 | [4] |
Resin core | 20.0 | 0.3 | [4] |
Gutta-percha | 0.69 | 0.45 | [4] |
Titanium post | 120 | 0.3 | [23] |
Fiberglass post | 53.8 | 0.3 | [4] |
CFR-PEEK | 18.0 | 0.39 | [24] |
Pure PEEK | 4.1 | 0.4 | [25] |
Group | Material | Root Strain | Post Strain | Absolute Value of Difference |
---|---|---|---|---|
Prototype 2 | Titanium post | 4.10 × 10−4 | 1.63 × 10−4 | 2.47 × 10−4 |
Fiber post | 3.62 × 10−4 | 1.65 × 10−4 | 1.97 × 10−4 | |
CFR-PEEK | 3.77 × 10−4 | 2.95 × 10−4 | 8.20 × 10−5 | |
Pure PEEK | 4.12 × 10−4 | 5.59 × 10−4 | 1.47 × 10−4 | |
Prototype 3 | Titanium post | 4.06 × 10−4 | 1.90 × 10−4 | 2.16 × 10−4 |
Fiber post | 3.71 × 10−4 | 1.71 × 10−4 | 2.00 × 10−4 | |
CFR-PEEK | 3.52 × 10−4 | 2.78 × 10−4 | 7.40 × 10−5 | |
Pure PEEK | 4.39 × 10−4 | 5.29 × 10−4 | 9.00 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Feng, Z.; Wang, L.; Mihcin, S.; Kang, J.; Bai, S.; Zhao, Y. Finite Element Study of PEEK Materials Applied in Post-Retained Restorations. Polymers 2022, 14, 3422. https://doi.org/10.3390/polym14163422
Yu H, Feng Z, Wang L, Mihcin S, Kang J, Bai S, Zhao Y. Finite Element Study of PEEK Materials Applied in Post-Retained Restorations. Polymers. 2022; 14(16):3422. https://doi.org/10.3390/polym14163422
Chicago/Turabian StyleYu, Hao, Zhihong Feng, Ling Wang, Senay Mihcin, Jianfeng Kang, Shizhu Bai, and Yimin Zhao. 2022. "Finite Element Study of PEEK Materials Applied in Post-Retained Restorations" Polymers 14, no. 16: 3422. https://doi.org/10.3390/polym14163422
APA StyleYu, H., Feng, Z., Wang, L., Mihcin, S., Kang, J., Bai, S., & Zhao, Y. (2022). Finite Element Study of PEEK Materials Applied in Post-Retained Restorations. Polymers, 14(16), 3422. https://doi.org/10.3390/polym14163422