Effect of Temperature on Mechanical Behavior of Concrete Reinforced with Different Types of GFRP Bar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. GFRP Bars
2.1.2. Concrete
2.2. Conditioning of Specimens
2.3. Methods
2.3.1. Thermal Analysis
2.3.2. Tensile Test
- GFRP bar
- 2.
- GFRP bar with concrete coating
2.3.3. Assessment of Bond between GFRP Bar and Concrete
3. Results and Discussion
3.1. Thermal Analyses
3.1.1. GFRP Bars
3.1.2. Cement Paste
3.2. Effect of Temperature on Mechanical Properties
3.2.1. GFRP Bars
3.2.2. Concrete Reinforced with GFRP Bars
3.2.3. Adhesion between GFRP Bars and Concrete
4. Conclusions
- The tensile strength of GFRP bars decreased significantly when subjected to high temperatures, with 350 °C being the critical temperature at which the decomposition of the polymer matrix occurred, releasing heat and toxic volatiles. GFRP bars exhibited elastic behavior even when heated at temperatures of 150 °C, 300 °C, and 350 °C, although there was a gradual reduction in displacement and consequently, a reduction in the load needed to achieve rupture;
- The 20 mm-thick concrete cladding increased protection against thermo-oxidative degradation resulting from exposure to high temperatures. At the temperature of 350 °C, this protection was compromised by the appearance of longitudinal cracks in the concrete due to the volumetric expansion of the GFRP bars;
- The influence of the GFRP matrix type was significant on the tensile behavior of the bars. In this sense, GFRP bars with epoxy matrix showed the best performance, followed by those with vinyl ester and polyester matrices. Thermoxidative degradation of the GFRP bar ribs resulted in a reduction in the capacity to transfer tension to the concrete, regardless of the type of coating concrete;
- Silica fume improved the performance of the concrete coating and, consequently, improved the protection of GFRP bars, making it difficult for oxygen and heat to diffuse towards the bars. As a result, concrete-coated GFRP bars exhibited better tensile behavior at elevated temperatures compared to GFRP bars that were directly exposed to heat.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manalo, A.; Maranan, G.; Benmokrane, B.; Primo, P.; Alajarmeh, O.; Ferdous, W.; Liang, R.; Hota, G. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cem. Concr. Compos. 2020, 109, 103564. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, F.; Li, C.; Hong, B. Hydrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites. Constr. Build. Mater. 2022, 315, 125710. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; Hong, B.; Huang, X.; Xin, M.; Huang, S. The tensile performance of FRP bars embedded in concrete under elevated temperatures. Polym. Degrad. Stab. 2021, 193, 1–14. [Google Scholar] [CrossRef]
- Subramanian, N.; Solaiyan, E.; Sendrayaperumal, A. Flexural behaviour of geopolymer concrete beams reinforced with BFRP and GFRP polymer composites. Adv. Struct. Eng. 2022, 25, 954–965. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behaviour of GFRP reinforcing bars subjected to extreme temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Alsayed, S.; Al-Salloum, Y.; Almusallan, T.; El-Gamal, S.; Aqel, M. Performance of glass fiber reinforced polymer bars under elevated temperatures. Compos. Part B 2012, 43, 2265–2271. [Google Scholar] [CrossRef]
- Arrieta, J.J.; Richaud, E.; Fayolle, B.; Nizeyimana, F. Thermal oxidation of vinyl ester and unsaturated polyester resins. Polym. Degrad. Stab. 2016, 129, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F. Residual bond between concrete and reinforcing GFRP rebars at elevated temperatures. Struct. Build. 2019, 172, 127–140. [Google Scholar] [CrossRef]
- Wang, X.; Zha, X. Experimental research on mechanical behavior of GFRP bars under high temperature. Appl. Mech. Mater. 2011, 71, 3591–3594. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wong, P.M.H.; Kodur, V. An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures. Compos. Struct. 2007, 80, 131–140. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Oskouei, A.V.; Bazli, L. Effect of sequential exposure to UV radiation and water vapor condensation and extreme temperatures on the mechanical properties of GFRP bars. J. Compos. Constr. 2018, 22, 1–16. [Google Scholar] [CrossRef]
- Najafabadi, E.P.; Oskouei, A.V.; Khaneghahi, M.H.; Shoaei, P.; Ozbakkaloglu, T. The tensile performance of FRP bars embedded in concrete under elevated temperatures. Constr. Build. Mater. 2019, 211, 1138–1152. [Google Scholar] [CrossRef]
- Saafi, M. Effect of fire of FRP reinforced concrete members. Compos. Struct. 2002, 58, 11–20. [Google Scholar] [CrossRef]
- National Research Council CNR–DT 203. Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars; National Research Council: Rome, Italy, 2006.
- Canadian Standards Association CAN/CSA-S806; Design and Construction of Building Components with Fibre-Reinforced Polymers. Canadian Standards Association/National Standard of Canada: Toronto, ON, Canada, 2012.
- ACI Committee 440. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars; ACI 440.1R-15; American Concrete Institute: Farmington Hills, MI, USA, 2015. [Google Scholar]
- Hasan, Z. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem. Concr. Comp. 2008, 30, 106–112. [Google Scholar]
- Ellis, D.S.; Tabatabai, H.; Nabizadeh, A. Residual tensile strength and bond properties of GFRP bars after exposure to elevated temperatures. Materials 2018, 11, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solyon, S.; Di Benedetti, M.; Guadagnini, M.; Balazs, G.L. Effect of temperature on the bond behaviour of GFRP bars in concrete. Compos. Part B 2019, 183, 107602. [Google Scholar] [CrossRef]
- Rosa, I.C.; Firmo, J.P.; Correia, J.R.; Mazzuca, P. Influence of elevated temperatures on the bond behaviour of ribbed GFRP bars in concrete. Cem. Concr. Compos. 2021, 122, 104119. [Google Scholar] [CrossRef]
- American Society for Testing and Materials D 792; Standard Test Methods for Density and Specific Gravity of Plastics by Displacement. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- American Society for Testing and Materials D 3171; Standard Test Methods for Constituent Content of Composite Materials. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- American Society for Testing and Materials D 7205; Standard Test Methods for Tensile Properties Matrix Composite Materials. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- Brazilian Association for Technical Standards NBR 7211; Aggregates for Concrete–Specification. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 52; Fine Aggregate–Determination of the Bulk Specific Gravity and Apparent Specific Gravity. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 53; Coarse Aggregate–Determination of the Bulk Specific Gravity, Apparent Specific Gravity, and Water Absorption. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 45; Aggregates–Determination of the Unit Weight and Air-Void Contents. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2006.
- Brazilian Association for Technical Standards NBR NM 248; Aggregates–Sieve Analysis of Fine and Coarse Aggregates. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2003.
- Brazilian Association for Technical Standards NBR 5739; Concrete–Compression Test of Cylindrical Specimens. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2018.
- Brazilian Association for Technical Standards NBR 8522; Concrete–Determination of Static Modulus of Elasticity and Deformation by Compression. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2018.
- Brazilian Association for Technical Standards NBR 7222; Concrete and Mortar–Determination of he Tension Strength by Diametrical Compression of Cylindrical Test Specimens. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2011.
- Brazilian Association for Technical Standards NBR 9778; Hardened Mortar and Concrete–Determination of Absorption, Voids, and Specific Gravity. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Correia, J.R.; Gomes, M.M.; Pires, J.M.; Branco, F.A. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment. Compos. Struct. 2013, 98, 303–313. [Google Scholar] [CrossRef]
- American Society for Testing and Materials E 1868; Standard Test Methods for Loss-On-Drying by Thermogravimetry. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- American Society for Testing and Materials E 1356; Standard Test Methods for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2008.
- Brazilian Association for Technical Standards NBR 7477; Determination of the Surface Conformation Coefficient of Steel Bars and Wires Intended for Reinforced Concrete Reinforcements–Specification. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 1982.
- Borsoi, C.; Zattera, A.J.; Ferreira, C.A. Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Appl. Surf. Sci. 2016, 364, 124–132. [Google Scholar] [CrossRef]
- American Society for Testing and Materials D 7957; Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- Hoppe Filho, J.; Gobbi, A.; Pereira, E.; Quarcione, V.A.; Medeiros, M.H.F. Pozzolanic activity of mineral additions to Portland cement (Part I): Pozzolanic activity index with lime (PAI), X-ray diffraction (XRD), thermogravimetry (TG/DTG) and modified Chapelle. Mater 2017, 22, e11872. [Google Scholar] [CrossRef]
- Fernandes, B.; Gil, A.M.; Bolina, F.L.; Tutikian, B.F. Microstructure of concrete subjected to elevated temperatures: Physical-chemical changes and analysis techniques. Rev. IBRACON Strut. Mater. 2017, 10, 838–863. [Google Scholar] [CrossRef] [Green Version]
- Dwaikat, M.B.; Kodur, V.K.R. Hydrothermal model for predicting fire-induced spalling in concrete structural systems. Fire Saf. J. 2009, 44, 425–434. [Google Scholar] [CrossRef]
- Spagnuolo, S.; Meda, A.; Rinaldi, Z.; Nanni, A. Residual behaviour of glass FRP bars subjected to high temperatures. Compos. Struct. 2018, 203, 886–893. [Google Scholar] [CrossRef]
- Aydin, F. Experimental investigation of thermal expansion and concrete strength effects of FRP bars behavior embedded in concrete. Constr. Build. Mater. 2018, 163, 1–8. [Google Scholar] [CrossRef]
- Abdalla, H. Concrete cover requirements for FRP reinforced members in hot climates. Compos. Struct. 2006, 73, 61–69. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Torres, L.; Jakstaite, R. Deformation analysis of reinforced ties: Representative geometry. Intern. Fed. Struct. Concr. 2017, 1, 634–647. [Google Scholar] [CrossRef]
- Martins, M.P.; Rangel, C.S.; Amario, M.; Lima, J.M.F.; Lima, P.R.L.; Toledo Filho, R.D. Modelling of tension stiffening in reinforced recycled concrete. Rev. IBRACON Struct. Mater. 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Federation International Du Beton. FIB-10 Model Code for Concrete Structures 2010; Federation International Du Beton: Lausanne, Switzerland, 2010. [Google Scholar]
- Schlicke, D.; Dorfmann, E.M.; Fehling, E.; Tue, N.V. Calculation of maximum crack width for practical design of reinforced concrete. Civ. Eng. Des. 2021, 3, 45–61. [Google Scholar] [CrossRef]
- Baena, M.; Torres, L.; Turon, A.; Barris, C. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Compos. Part B 2009, 40, 784–797. [Google Scholar] [CrossRef]
Property | Method | GFRP P | GFRP V | GFRP E |
---|---|---|---|---|
Relative density (g/cm3) | ASTM D 792:2020 [21] | 2.1 ± 0.1 | 2.0 ± 0.1 | 1.9 ± 0.1 |
Fiber content by weight (%) | ASTM D 3171:2015 [22] | 82.2 ± 0.1 | 80.8 ± 0.1 | 81.2 ± 0.1 |
Cross-sectional area (mm2) | ASTM D 7205:2016 [23] | 134.2 ± 0.2 | 128.2 ± 0.3 | 112.7 ± 0.1 |
Tensile strength (MPa) | 818.2 ± 10.1 | 844.8 ± 1.6 | 971.3 ± 8.6 | |
Bar diameter—db (mm) | 13.1 ± 0.2 | 12.8 ± 0.3 | 12.0 ± 0.1 | |
Rib width (mm) | - | 5.1 ± 0.1 | 5.3 ± 0.2 | 3.0 ± 0.1 |
Rib height—rb (mm) | - | 1.0 ± 0.1 | 1.2 ± 0.2 | 0.8 ± 0.1 |
Rib spacing—rs (mm) | - | 18.6 ± 0.7 | 18.8 ± 0.7 | 11.7 ± 0.4 |
Property | Methods | Sand | Gravel |
---|---|---|---|
Average particle diameter-D50 (mm) | NBR 7211:2009 [24] | 0.350 | 7.100 |
Specific gravity (kg/m3) | NBR NM 52:2009 [25] a, and NBR NM 53:2009 [26] b | 2650.0 | 2770.0 |
Uncompacted bulk density (kg/m3) | NBR NM 45:2006 [27] | 1490.0 | 1390.0 |
Compacted bulk density (kg/m3) | - | 1490.0 | |
Fineness modulus | NBR NM 248:2003 [28] | 1.6 | 6.0 |
Properties | Methods | REF | SA-10 |
---|---|---|---|
Compressive strength (MPa) | NBR 5739:2018 [29] | 32.7 ± 0.7 | 38.0 ± 1.3 |
Elastic modulus (GPa) | NBR 8522:2018 [30] | 36.3 ± 1.0 | 35.1 ± 1.3 |
Splitting tensile strength (MPa) | NBR 7222:2011 [31] | 3.6 ± 0.1 | 3.6 ± 0.4 |
Apparent specific gravity (kg/m3) | NBR 9778:2009 [32] | 2556.0 ± 24.0 | 2617.0 ± 14.0 |
Apparent porosity (%) | 18.4 ± 1.4 | 16.3 ± 1.6 |
Sample | Tg a (°C) | Td b (°C) | Temperature (°C) | Average Tensile Strength (MPa) | Retention of Tensile Strength (%) |
---|---|---|---|---|---|
GFRP-P | 116.9 | 389.4 | 23.0 | 821.8 ± 7.2 | 100.0 |
150.0 | 612.6 ± 2.4 | 74.5 | |||
300.0 | 338.1 ± 12.9 | 41.1 | |||
GFRP-V | 120.5 | 395.4 | 23.0 | 844.8 ± 1.2 | 100.0 |
150.0 | 720.7 ± 18.4 | 85.3 | |||
300.0 | 336.4 ± 11.1 | 39.8 | |||
GFRP-E | 117.1 | 366.0 | 23.0 | 971.3 ± 6.1 | 100.0 |
150.0 | 871.1 ± 17.6 | 89.7 | |||
300.0 | 566.7 ± 6.2 | 58.3 |
Sample | Temperature (°C) | Average Tensile Strength (MPa) | ||
---|---|---|---|---|
Bar GFRP-N (without Concrete) | Bar GFRP-Y (with Concrete) | |||
REF | SA-10 | |||
GFRP-P | 23.0 | 821.8 ± 7.2 | 825.8 ± 12.3 | 800.0 ± 16.8 |
150.0 | 612.6 ± 2.4 | 751.8 ± 9.3 | 796.5 ± 21.4 | |
300.0 | 338.1 ± 12.9 | 555.1 ± 23.1 | 561.9 ± 16.1 | |
350.0 | - | 379.3 ± 32.4 | 374.6 ± 19.0 | |
GFRP-V | 23.0 | 844.8 ± 1.2 | 835.6 ± 19.9 | 840.9 ± 37.5 |
150.0 | 720.7 ± 18.4 | 787.0 ± 8.4 | 805.3 ± 5.8 | |
300.0 | 336.4 ± 11.1 | 598.5 ± 20.4 | 629.1 ± 34.8 | |
350.0 | - | 427.9 ± 16.8 | 405.7 ± 29.1 | |
GFRP-E | 23.0 | 971.3 ± 6.1 | 953.1 ± 4.4 | 960.4 ± 5.7 |
150.0 | 871.1 ± 17.6 | 916.3 ± 27.9 | 958.0 ± 8.6 | |
300.0 | 566.7 ± 6.2 | 810.0 ± 18.4 | 769.3 ± 41.5 | |
350.0 | - | 582.6 ± 25.3 | 609.7 ± 23.1 |
Source of Variation | SS | df | MS | F | p-Value | Significance |
---|---|---|---|---|---|---|
Cover concrete | 214,312 | 2 | 107,156 | 184.43 | 0.00 | Yes |
GFRP bar | 527,409 | 2 | 263,705 | 453.86 | 0.00 | Yes |
Temperature | 1,284,313 | 2 | 642,157 | 11,105.22 | 0.00 | Yes |
Cover concrete−GFRP bar | 4850 | 4 | 1213 | 2.09 | 9.52 × 10−2 | No |
Cover concrete—Temperature | 194,243 | 4 | 48,561 | 83.58 | 0.00 | Yes |
GFRP bar—Temperature | 24,435 | 4 | 6109 | 10.51 | 2.26 × 10−6 | Yes |
Cover concrete—GFRP bar—Temperature | 19,689 | 8 | 2461 | 4.24 | 5.39 × 10−4 | Yes |
Error | 31,375 | 54 | - | - | - | - |
Total | 2,300,627 | 80 | - | - | - | - |
Sample | Temp. (°C) | Distance between Crack (mm) | First Crack Load (kN) | Bond Stress (MPa) | |||
---|---|---|---|---|---|---|---|
REF | SA-10 | REF | SA-10 | REF | SA-10 | ||
GFRP-P | 23.0 | 65.7 ± 4.9 | 64.4 ± 13.9 | 2.5 ± 0.1 | 2.7 ± 0.4 | 4.2 ± 0.3 | 4.6 ± 0.9 |
150.0 | 90.7 ± 9.2 | 85.3 ± 9.2 | 2.1 ± 0.1 | 2.4 ± 0.5 | 2.4 ±0.6 | 3.1 ± 0.3 | |
300.0 | 120.0 ± 0.3 | 146.7 ± 23.1 | 2.5 ± 0.3 | 2.6 ± 0.2 | 1.6 ± 0.1 | 1.2 ± 0.2 | |
350.0 | 160.0 ± 0.2 | 186.7 ± 16.2 | 2.1 ± 0.1 | 4.1 ± 0.1 | 1.1 ± 0.1 | 0.9 ± 0.2 | |
GFRP-V | 23.0 | 74.3 ± 5.7 | 64.3 ± 10.0 | 3.1 ± 0.2 | 2.1 ± 0.1 | 3.8 ± 0.3 | 4.3 ± 0.6 |
150.0 | 72.4 ± 6.6 | 90.7 ± 9.2 | 2.9 ± 0.8 | 2.0 ± 0.1 | 3.1 ± 0.3 | 3.0 ± 0.3 | |
300.0 | 112.0 ± 13.8 | 160.0 ± 0.8 | 2.6 ± 0.1 | 2.7 ± 0.1 | 1.7 ± 0.2 | 1.1 ± 0.1 | |
350.0 | 160.0 ± 0.5 | 160.0 ± 0.4 | 2.0 ± 0.1 | 6.4 ± 0.7 | 1.1 ± 0.1 | 1.0 ± 0.2 | |
GFRP-E | 23.0 | 69.5 ± 10.0 | 65.7 ± 4.9 | 3.2 ± 0.1 | 2.2 ± 0.1 | 4.4 ± 0.6 | 4.8 ± 0.4 |
150.0 | 112.0 ± 13.9 | 85.3 ± 9.2 | 3.5 ± 0.1 | 2.2 ± 0.1 | 2.1 ± 0.3 | 3.4 ± 0.3 | |
300.0 | 120.0 ± 0.5 | 146.7 ± 23.1 | 2.3 ± 0.3 | 3.0 ± 0.3 | 1.7 ± 0.1 | 1.3 ± 0.2 | |
350.0 | 160.0 ± 0.2 | 186.7 ± 46.2 | 2.1 ± 0.1 | 4.2 ± 0.1 | 1.2 ± 0.2 | 0.9 ± 0.2 |
Source of Variation | SS | df | MS | F | p-Value | Significance |
---|---|---|---|---|---|---|
Type of concrete | 0.1301 | 1 | 0.1301 | 1.150 | 2.89 × 10−1 | No |
GFRP bar | 0.1530 | 2 | 0.0765 | 0.676 | 5.13 × 10−1 | No |
Temperature | 123.2830 | 3 | 41.0943 | 363.209 | 0.00 | Yes |
Type of concrete−GFRP bar | 0.3544 | 2 | 0.1772 | 1.566 | 2.19 × 10−1 | No |
Type of concrete—Temperature | 3.6422 | 3 | 1.2141 | 10.730 | 1.64 × 10−15 | Yes |
GFRP bar—Temperature | 1.1298 | 6 | 0.1883 | 1.664 | 1.50 × 10−1 | No |
Type of concrete—GFRP bar—Temperature | 1.0811 | 6 | 0.1802 | 1.593 | 1.70 × 10−1 | No |
Error | 5.4308 | 48 | 0.1131 | - | - | - |
Total | 135.2045 | 71 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo Moura, R.C.; Lima, P.R.L.; Ribeiro, D.V. Effect of Temperature on Mechanical Behavior of Concrete Reinforced with Different Types of GFRP Bar. Polymers 2022, 14, 3437. https://doi.org/10.3390/polym14173437
de Araújo Moura RC, Lima PRL, Ribeiro DV. Effect of Temperature on Mechanical Behavior of Concrete Reinforced with Different Types of GFRP Bar. Polymers. 2022; 14(17):3437. https://doi.org/10.3390/polym14173437
Chicago/Turabian Stylede Araújo Moura, Ruan Carlos, Paulo Roberto Lopes Lima, and Daniel Véras Ribeiro. 2022. "Effect of Temperature on Mechanical Behavior of Concrete Reinforced with Different Types of GFRP Bar" Polymers 14, no. 17: 3437. https://doi.org/10.3390/polym14173437
APA Stylede Araújo Moura, R. C., Lima, P. R. L., & Ribeiro, D. V. (2022). Effect of Temperature on Mechanical Behavior of Concrete Reinforced with Different Types of GFRP Bar. Polymers, 14(17), 3437. https://doi.org/10.3390/polym14173437