Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of LX-Loaded NCs
2.2.2. Particle Size and Polydispersity Index
2.2.3. Zeta Potentiometry
2.2.4. Particle Shape and Surface Morphology
2.2.5. Differential Scanning Calorimetry
2.2.6. X-ray Powder Diffraction
2.2.7. Stability Studies
2.2.8. Dissolution Studies
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Polydispersity Index
3.2. Morphology of LX-Loaded NCs
3.3. Differential Scanning Calorimetry
3.4. X-ray Powder Diffraction
3.5. Stability Studies
3.6. Dissolution and Solubility Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhakay, A.; Rahman, M.; Dave, R.N.; Bilgili, E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–Processing aspects and challenges. Pharmaceutics 2018, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, T.; Li, N.; Jiang, Y.; Yin, H.; Wu, M. Simulation-based comparison of Biopharmaceutics Classification System and drug structure. Die Pharm. -Int. J. Pharm. Sci. 2020, 75, 124–130. [Google Scholar]
- Chen, Y.; Li, T. Cellular uptake mechanism of paclitaxel nanocrystals determined by confocal imaging and kinetic measurement. AAPS J. 2015, 17, 1126–1134. [Google Scholar] [CrossRef]
- Lipinski, C.A.L.F. Poor aqueous solubility—An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Choi, J.-S. Design of cilostazol nanocrystals for improved solubility. J. Pharm. Innov. 2020, 15, 416–423. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.Y.; Ryoo, J.J.; Lee, K.P. Complexation of the non-steroidal anti-inflammatory drug Loxoprofen with modified and unmodified β-Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2001, 40, 139–146. [Google Scholar] [CrossRef]
- Du, J.; Li, X.; Zhao, H.; Zhou, Y.; Wang, L.; Tian, S.; Wang, Y. Nano-suspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int. J. Pharm. 2015, 495, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Durowoju, I.B.; Bhandal, K.S.; Hu, J.; Carpick, B.; Kirkitadze, M. Differential scanning calorimetry-A method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp. 2017, 121, 55262. [Google Scholar]
- Khan, J.; Bashir, S.; Khan, S.; Ihsan, A.; Khan, M.A.; Ali, F.L.; Isreb, M. Fabrication and characterization of Dexibuprofen nanocrystals using DENA (R) media milling. Lat. Am. J. Pharm. 2018, 37, 947–952. [Google Scholar]
- Falavigna, M.; Klitgaard, M.; Brase, C.; Ternullo, S.; Škalko-Basnet, N.; Flaten, G.E. Mucus-PVPA (mucus phospholipid vesicle-based permeation assay): An artificial permeability tool for drug screening and formulation development. Int. J. Pharm. 2018, 537, 213–222. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Xiong, S.; Luo, J.; Li, Y.; Zhao, Y.; Chen, T. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int. J. Pharm. 2020, 577, 119–153. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Sun, F.; Dai, Y.; Wang, S.; Bai, Y.; Qin, S. “Top-Down” “Bottom-up” strategies for wafer-scaled miniaturized gas sensors design and fabrication. Microsyst. Nanoeng. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Orita, S.; Ishikawa, T.; Miyagi, M.; Ochiai, N.; Inoue, G.; Eguchi, Y.; Ohtori, S. Percutaneously absorbed NSAIDs attenuate local production of proinflammatory cytokines and suppress the expression of c-Fos in the spinal cord of a rodent model of knee osteoarthritis. J. Orthop. Sci. 2012, 17, 77–86. [Google Scholar] [CrossRef]
- Müller, K.; Kulkarni, J.; Motskin, M.; Goode, A.; Winship, P.; Skepper, J.N.; Porter, A.E. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 2010, 4, 6767–6779. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, S.T.; Ullah, N.; Khan, S.; Ramharack, P.; Soliman, M.; de Matas, M.; Hussain, Z. Domperidone nanocrystals with boosted oral bioavailability: Fabrication, evaluation and molecular insight into the polymer-domperidone nanocrystal interaction. Drug Deliv. Transl. Res. 2019, 9, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Bashir, S.; Khan, M.A.; Mohammad, M.A.; Isreb, M. Fabrication and characterization of dexibuprofen nanocrystals using microchannel fluidic rector. Drug Des. Devel. Ther. 2018, 12, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Pardhi, V.P.; Verma, T.; Flora, S.J.S.; Chandasana, H.; Shukla, R. Nano-crystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. Curr. Pharm. Des. 2018, 24, 5129–5146. [Google Scholar] [CrossRef]
- Paudwal, G.; Rawat, N.; Gupta, R.; Baldi, A.; Singh, G.; Gupta, P.N. Recent advances in solid dispersion technology for efficient delivery of poorly water-soluble drugs. Curr. Pharm. Des. 2019, 25, 1524–1535. [Google Scholar] [CrossRef]
- Paun, J.S.; Tank, H.M. Nanosuspension: An emerging trend for bioavailability enhancement of poorly soluble drugs. Asian J. Pharm. Technol. 2012, 2, 157–168. [Google Scholar]
- Rocha, K.A.D.; Krawczyk-Santos, A.P.; Andrade, L.M.; de Souza, L.C.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Voriconazole-loaded nanostructured lipid carriers (NLC) for drug delivery in deeper regions of the nail plate. Int. J. Pharm. 2017, 531, 292–298. [Google Scholar] [CrossRef]
- Khan, S.; Matas, M.D.; Zhang, J.; Anwar, J. Nanocrystal preparation: Low-energy precipitation method revisited. Cryst. Growth Des. 2013, 13, 2766–2777. [Google Scholar] [CrossRef]
- Kim, M.S.; Yeom, D.W.; Kim, S.R.; Yoon, H.Y.; Kim, C.H.; Son, H.Y.; Kim, J.H.; Lee, S.; Choi, Y.W. Development of a Chitosan based double layer-coated tablet as a platform for colon-specific drug delivery. Drug Des. Dev. Ther. 2017, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.M.M.; Alqahtani, A.; Menaa, F.; Kayarohanam, S.; Fatease, A.A.; Alqahtani, T.; Alamri AEl-Sherbiny, M.; Ramkanth, S.; Janakiraman, A.K. In Vitro Physical Characterizations and Docking Studies on Carvedilol Nanocrystals. Crystals 2022, 12, 988. [Google Scholar] [CrossRef]
Sample | LX/Ethanol (mg/mL) | Distill Water (mL) | HPMC (w/v, mg/mL) | PVP (w/v) | NaCMC (w/v) | Pluronic (w/v) | SLS (w/v) |
---|---|---|---|---|---|---|---|
F1 | 6/0.2 | 1.8 | 0.009 | ---- | ---- | ---- | ---- |
F2 | 6/0.2 | 1.8 | ---- | 0.009 | ---- | ---- | ---- |
F3 | 6/0.2 | 1.8 | 0.009 | 0.009 | ---- | ---- | ---- |
F4 | 6/0.2 | 1.8 | ---- | ---- | ---- | 0.0054 | ---- |
F5 | 6/0.2 | 1.8 | ---- | ---- | ---- | 0.0054 | 0.002 |
F6 | 6/0.2 | 1.8 | ---- | ---- | ---- | ---- | 0.002 |
F7 | 6/0.2 | 1.8 | ---- | ---- | 0.002 | ---- | ---- |
F8 | 6/0.2 | 1.8 | ---- | 0.009 | ---- | ---- | 0.002 |
F9 | 6/0.2 | 1.8 | 0.009 | 0.009 | 0.002 | ---- | ---- |
F10 | 6/0.2 | 1.8 | 0.009 | 0.009 | ---- | ---- | 0.002 |
F11 | 6/0.2 | 1.8 | ---- | 0.009 | 0.002 | ---- | ---- |
F12 | 6/0.2 | 1.8 | 0.009 | ---- | 0.002 | ---- | ---- |
Formulation Code | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
F1 | 600 ± 4.0 | 0.8 ± 0.02 | −16.0 |
F2 | 800 ± 5.0 | 0.9 ± 0.03 | −14.5 |
F3 | 500 ± 4.5 | 0.7 ± 0.05 | −15.2 |
F4 | 900 ± 6.0 | 0.6 ± 0.07 | −12.0 |
F5 | 850 ± 7.0 | 0.7 ± 0.05 | −13.5 |
F6 | 950 ± 7.5 | 0.8 ± 0.04 | −11.2 |
F7 | 980 ± 6.0 | 0.5 ± 0.03 | −11.0 |
F8 | 650 ± 5.5 | 0.9 ± 0.06 | −16.0 |
F9 | 400 ± 4.0 | 0.4 ± 0.02 | −18.5 |
F10 | 300 ± 3.0 | 0.3 ± 0.01 | −20.5 |
F11 | 600 ± 4.0 | 0.5 ± 0.02 | −15.0 |
F12 | 550 ± 6.0 | 0.6 ± 0.04 | −14.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, B.A.; Khalid, H.; Khan, M.K.; Hosny, K.M.; Khan, S.; Rizg, W.Y.; Safhi, A.Y.; Halwani, A.A.; Almehmady, A.M.; Menaa, F. Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers 2022, 14, 3464. https://doi.org/10.3390/polym14173464
Khan BA, Khalid H, Khan MK, Hosny KM, Khan S, Rizg WY, Safhi AY, Halwani AA, Almehmady AM, Menaa F. Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers. 2022; 14(17):3464. https://doi.org/10.3390/polym14173464
Chicago/Turabian StyleKhan, Barkat Ali, Hina Khalid, Muhammad Khalid Khan, Khaled M. Hosny, Shahzeb Khan, Waleed Y. Rizg, Awaji Y. Safhi, Abdulrahman A. Halwani, Alshaimaa M. Almehmady, and Farid Menaa. 2022. "Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations" Polymers 14, no. 17: 3464. https://doi.org/10.3390/polym14173464
APA StyleKhan, B. A., Khalid, H., Khan, M. K., Hosny, K. M., Khan, S., Rizg, W. Y., Safhi, A. Y., Halwani, A. A., Almehmady, A. M., & Menaa, F. (2022). Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers, 14(17), 3464. https://doi.org/10.3390/polym14173464