Studies on the Interaction of Poly(phenylene methylene) with Silver(I) and Hexacarbonylchromium(0)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of PPM
2.3. Preparation of PPM-Ag+ Complexes
2.4. Preparation of PPM-Cr0 Complexes
2.5. Spectroscopic Analyses
3. Results and Discussion
3.1. Complexes of PPM with Silver(I) Salts
3.1.1. Evidence of Formation of Coordination Compounds
3.1.2. Optical Properties
3.1.3. Decay of Silver(I) Complexes in THF
3.2. Complexes of PPM with Tricarbonylchromium(0)
3.2.1. Evidence for Formation of Coordination Compounds
3.2.2. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teng, D.G.; Wei, X.Y.; Yang, Z.; Zhu, Q.J.; Gao, H.S.; Li, J.H.; Zhang, M.; Zong, Z.M.; Kang, Y.H. Synthesis of poly (phenylene methylenes) via a AlCl3-mediated Friedel—Craft alkylation of multi-substituted benzyl bromide with benzene. J. Appl. Polym. Sci. 2020, 137, 48779. [Google Scholar] [CrossRef]
- Dumont, F.; Duriau-Montagne, F.; Baudry, D.; Dormond, A. Synthesis of new soluble polybenzyls by Friedel—Crafts reactions. Polym. Int. 1999, 48, 165–170. [Google Scholar] [CrossRef]
- Jacobson, R.A. Polymers from benzyl chloride and related compounds. J. Am. Chem. Soc. 1932, 54, 1513–1518. [Google Scholar] [CrossRef]
- Gunes, D.; Yagci, Y.; Bicak, N. Synthesis of soluble poly(p-phenylene methylene) from tribenzylborate by acid-catalyzed polymerization. Macromolecules 2010, 43, 7993–7997. [Google Scholar] [CrossRef]
- Grassie, N.; Meldrum, I.G. Friedel-crafts polymers—IX Later stages of the copolymerization of p-di(chloromethyl)benzene with aromatic substances. Eur. Polym. J. 1971, 7, 1253–1273. [Google Scholar] [CrossRef]
- Braendle, A.; Perevedentsev, A.; Cheetham, N.J.; Stavrinou, P.N.; Schachner, J.A.; Mösch-Zanetti, N.C.; Niederberger, M.; Caseri, W.R. Homoconjugation in poly (phenylene methylene)s: A case study of non-p-conjugated polymers with unexpected fluorescent properties. Polym. Sci. Part. B Polym. Phys. 2017, 55, 707–720. [Google Scholar] [CrossRef]
- Bamoharram, F.F. Nano-Preyssler heteropolyacid: A novel nanocatalyst for poly-condensation of benzyl alcohols. Asian J. Chem. 2011, 23, 177–179. [Google Scholar]
- Arata, K.; Fukui, A.; Toyoshima, I. High catalytic activity of calcined iron sulphates for the polycondensation of benzyl chloride. J. Chem. Soc. Chem. Commun. 1978, 121–122. [Google Scholar] [CrossRef]
- Hino, M.; Arata, K. Iron oxide as an effective catalyst for the polycondensation of benzyl chloride, the formation of para-substituted polybenzyl. Chem. Lett. 1979, 8, 1141–1144. [Google Scholar] [CrossRef]
- D’Elia, M.F.; Braendle, A.; Schweizer, T.B.; Ortenzi, M.A.; Trasatti, S.P.; Niederberger, M.; Caseri, W. Poly (phenylene methylene): A multifunctional material for thermally stable, hydrophobic, fluorescent, corrosion-protective coatings. Coatings 2018, 8, 274. [Google Scholar] [CrossRef]
- Kennedy, J.P.; Isaacson, R.B. Synthesis and characterization of crystallilne polybenzyl and polybenzyl derivatives. J. Macromol. Chem. 1966, 1, 541–552. [Google Scholar]
- Ellis, B.; White, P.G.; Young, R.N. The fluorescence of polybenzyl. Eur. Polym. J. 1969, 5, 307–314. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Francisco-López, A.; Shi, X.; Braendle, A.; Caseri, W.R.; Goñi, A.R.; Campoy-Quiles, M. Homoconjugation in light-emitting poly (phenylene methylene) s: Origin and pressure-enhanced photoluminescence. Macromolecules 2020, 53, 7519–7527. [Google Scholar] [CrossRef]
- Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 1077–1184. [Google Scholar] [CrossRef]
- Baumberger, T.R.; Woolsey, N.F. Metal arene complexation of polybenzyl: Preparation and methylation. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 1717–1723. [Google Scholar] [CrossRef]
- Muetterties, E.L.; Bleeke, J.R.; Sievert, A.C. Arene transition metal chemistry: III. Arene exchange phenomena. J. Organomet. Chem. 1979, 178, 197–216. [Google Scholar] [CrossRef]
- Smith, H.G.; Rundle, R.E. The silver perchlorate-benzene complex, C6H6·AgClO4, crystal structure and charge transfer energy. J. Am. Chem. Soc. 1958, 80, 5075–5080. [Google Scholar] [CrossRef]
- Van Herwijnen, H.W.; Brinker, U.H. Meta selectivity in the Friedel—Crafts reaction induced by a Faujasite-Type zeolite. J. Org. Chem. 2001, 66, 2874–2876. [Google Scholar] [CrossRef] [PubMed]
- Ul Hasan, M.; Tsonis, C.P. Structural characterization of polybenzyls by high field 13C-NMR spectroscopy. J. Polym. Sci. A Polym. Chem. Ed. 1984, 22, 1349–1355. [Google Scholar] [CrossRef]
- Kuo, J.; Lenz, R.W. Linear polybenzyls. II. Lack of structure control in benzyl chloride polymerization. J. Polym. Sci. A Polym. Chem. Ed. 1976, 4, 2749–2761. [Google Scholar] [CrossRef]
- Tsonis, C.P.; Hasan, M.U. Polycondensation of benzyl chloride catalysed by ArCr(CO)3. Polymer 1983, 24, 707–712. [Google Scholar] [CrossRef]
- Braendle, A.; Schwendimann, P.; Niederberger, M.; Caseri, W.R. Synthesis and fractionation of poly (phenylene methylene). J. Poly. Sci. A Poly. Chem. 2018, 56, 309–318. [Google Scholar] [CrossRef]
- Ibad, M.F.; Schulz, A.; Villinger, A. Facile route to silver triarene borate salts, [Ag(arene)3][B(C6F5)4]: Thermodynamics, structure, and bonding. Organometallics 2019, 107, 1979–1985. [Google Scholar] [CrossRef]
- Kang, H.C.; Hanson, A.W.; Eaton, B.; Boekelheide, V. [26](1,2,4,5)Cyclophane (deltaphane) and related compounds. Simultaneous π-electron interaction among three benzene rings. J. Am. Chem. Soc. 1985, 107, 1979–1985. [Google Scholar] [CrossRef]
- Bryant, R.G. The NMR time scale. J. Chem. Ed. 1983, 60, 933. [Google Scholar] [CrossRef]
- Corinit, D.; Maccelli, A.; Chiavarino, B.; Schütz, M.; Bouchet, A.; Dopfer, O.; Crestoni, M.E.; Fornarini, S. Cation-π interactions between a noble metal and a polyfunctional aromatic iigand: Ag+ (benzylamine). Chem.–A Eur. J. 2022, 28, e202200300. [Google Scholar]
- Hunter, A.D.; Mozol, V.; Tsa, S.D. Nonlinear substituent interactions and the electron richness of substituted (η6-arene)Cr(CO)3 complexes as measured by IR and 13C NMR spectroscopy and cyclic voltammetry: Role of π-donor and π-acceptor Interactions. Organometallics 1992, 11, 2251–2262. [Google Scholar] [CrossRef]
- Armstrong, R.S.; Aroney, M.J.; Barnes, C.M.; Nugent, K.W. Infrared and Raman spectra of (η6-C6H6−nXn)Cr(CO)3 complexes where X = Me (n = 0–6) or OMe (n = 0–2). A study of metal—Ligand interactions. J. Mol. Struct. 1994, 323, 15–28. [Google Scholar] [CrossRef]
- Amster, R.L.; Hanna, R.B.; Tobin, M.C. Vibrational spectra of some group VI hexacarbonyls. Spectrochim. Acta 1963, 19, 1489–1494. [Google Scholar] [CrossRef]
- Solladié-Cavallo, A.; Suffert, J. 1H and 13C NMR of substituted chromium tricarbonyl complexes; substituent effects and Cr(CO)3 conformation. Org. Magn. Reson. 1980, 14, 426–430. [Google Scholar] [CrossRef]
- Brocard, J.; Laconi, A.; Couturier, D. 1H NMR conformational analysis of disubstituted arene tricarbonyl chromium complexes. Org. Magn. Reson. 1984, 22, 369–371. [Google Scholar] [CrossRef]
- Roy Jackson, W.; Pincornbe, C.F.; Rae, J.D.; Thapebinkarn, S. The stereochemistry of organometallic compounds. XIII. The 13C N.M.R. spectra of some Tricarbonyl(arene)chromium compounds. Aust. J. Chem. 1975, 28, 1535–1539. [Google Scholar] [CrossRef]
- Manton, J.C.; Amirjalayer, S.; Coleman, A.C.; McMahon, S.; Harvey, E.C.; Greetham, G.M.; Clark, J.P.; Buma, W.J.; Woutersen, S.; Prycea, M.T.; et al. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres. Dalton Trans. 2014, 43, 17797–17805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guichard, X.H.; Braendle, A.; Niederberger, M.; Caseri, W. Studies on the Interaction of Poly(phenylene methylene) with Silver(I) and Hexacarbonylchromium(0). Polymers 2022, 14, 3465. https://doi.org/10.3390/polym14173465
Guichard XH, Braendle A, Niederberger M, Caseri W. Studies on the Interaction of Poly(phenylene methylene) with Silver(I) and Hexacarbonylchromium(0). Polymers. 2022; 14(17):3465. https://doi.org/10.3390/polym14173465
Chicago/Turabian StyleGuichard, Xavier H., Andreas Braendle, Markus Niederberger, and Walter Caseri. 2022. "Studies on the Interaction of Poly(phenylene methylene) with Silver(I) and Hexacarbonylchromium(0)" Polymers 14, no. 17: 3465. https://doi.org/10.3390/polym14173465
APA StyleGuichard, X. H., Braendle, A., Niederberger, M., & Caseri, W. (2022). Studies on the Interaction of Poly(phenylene methylene) with Silver(I) and Hexacarbonylchromium(0). Polymers, 14(17), 3465. https://doi.org/10.3390/polym14173465