Joo, C.; Park, H.; Kwon, H.; Lim, J.; Shin, E.; Cho, H.; Kim, J.
Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data. Polymers 2022, 14, 3500.
https://doi.org/10.3390/polym14173500
AMA Style
Joo C, Park H, Kwon H, Lim J, Shin E, Cho H, Kim J.
Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data. Polymers. 2022; 14(17):3500.
https://doi.org/10.3390/polym14173500
Chicago/Turabian Style
Joo, Chonghyo, Hyundo Park, Hyukwon Kwon, Jongkoo Lim, Eunchul Shin, Hyungtae Cho, and Junghwan Kim.
2022. "Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data" Polymers 14, no. 17: 3500.
https://doi.org/10.3390/polym14173500
APA Style
Joo, C., Park, H., Kwon, H., Lim, J., Shin, E., Cho, H., & Kim, J.
(2022). Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data. Polymers, 14(17), 3500.
https://doi.org/10.3390/polym14173500