Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete
Abstract
:1. Introduction
2. Research Significance
3. Soft Computing Techniques
3.1. ANN
3.2. ELM
3.3. GMDH
3.4. MARS
3.5. LSSVM
3.6. GPR
4. Data Processing and Analysis
4.1. Descriptive Statistics and Statistical Analysis
4.2. Sensitivity Analysis
4.3. Performance Parameters
5. Results and Discussion
5.1. Simulation of Soft Computing Models
5.1.1. ANN Model
5.1.2. ELM Model
5.1.3. GMDH
5.1.4. MARS Modelling
5.1.5. LSSVM Model
5.1.6. GPR Model
5.1.7. HENS Modelling
5.2. Taylor Diagram
5.3. Accuracy Matrix
6. Conclusions
- A conventional model, GPR provided the best result in training (R2 = 0.9775, VAF = 97.74, RMSE = 0.0306, and RSR = 0.15) whereas the GMDH model provided the best result in testing (R2 = 0.9359, VAF = 92.08, RMSE = 0.0655, and RSR = 0.2953).
- It was observed from the experimental data that the suggested HENS model achieved the maximum prediction accuracy by minimising the particular flaws of CML models. Additionally, it is clear that the current HENS model (R2 = 0.9663, VAF = 96.60, RMSE = 0.0383, and RSR = 0.1847) was the best-performing model among the other models, according to Table 6, was able to handle the overfitting problem of the GPR model and exhibited all the desired trends in the parametric study of FRP, confirming the superiority of the suggested method at all levels.
- The HENS model had high potential to forecast the intended IFB of FRPL bonded to concrete, as shown by the parametric analysis, and was extremely easy to implement. It also has a very cheap computational cost (only 10 s), is representational, and performed better than the standalone models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liberati, E.A.P.; Nogueira, C.G.; Leonel, E.D.; Chateauneuf, A. Nonlinear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion. Eng. Fail. Anal. 2014, 46, 247–268. [Google Scholar] [CrossRef]
- Siddika, A.; Mamun, M.A.; Ferdous, W.; Alyousef, R. Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs–A state-of-the-art review. Eng. Fail. Anal. 2020, 111, 104480. [Google Scholar] [CrossRef]
- Yang, J.; Haghani, R.; Blanksvärd, T.; Lundgren, K. Experimental study of FRP-strengthened concrete beams with corroded reinforcement. Constr. Build. Mater. 2021, 301, 124076. [Google Scholar] [CrossRef]
- Panahi, M.; Zareei, S.A.; Izadi, A. Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Stud. Constr. Mater. 2021, 15, 00601. [Google Scholar] [CrossRef]
- Kotynia, R.; Oller, E.; Marí, A.; Kaszubska, M. Efficiency of shear strengthening of RC beams with externally bonded FRP materials –State-of-the-art in the experimental tests. Compos. Struct. 2021, 267, 113891. [Google Scholar] [CrossRef]
- Abedini, M.; Zhang, C. Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique. Compos. Struct. 2021, 260, 113473. [Google Scholar] [CrossRef]
- Hadi, M.N.S. Behaviour of FRP strengthened concrete columns under eccentric compression loading. Compos. Struct. 2007, 77, 92–96. [Google Scholar] [CrossRef]
- Tafsirojjaman, T.; Fawzia, S.; Thambiratnam, D.P.; Zhao, X.L. FRP strengthened SHS beam-column connection under monotonic and large-deformation cyclic loading. Thin-Walled Struct. 2021, 161, 107518. [Google Scholar] [CrossRef]
- Lee, W.T.; Chiou, Y.J.; Shih, M.H. Reinforced concrete beam-column joint strengthened with carbon fiber reinforced polymer. Compos. Struct. 2010, 92, 48–60. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Jiang, C. Quantification of Bond-Slip Relationship for Externally Bonded FRP-to-Concrete Joints. J. Compos. Constr. 2013, 17, 673–686. [Google Scholar] [CrossRef]
- Fathelbab, F.A.; Ramadan, M.S.; Al-Tantawy, A. Strengthening of RC bridge slabs using CFRP sheets. Alex. Eng. J. 2014, 53, 843–854. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, L.; Chen, X.; Chen, C.; Liu, K. A review on ultra-high cycle fatigue of CFRP. Compos. Struct. 2021, 256, 113058. [Google Scholar] [CrossRef]
- Kishore, K. Experimental Analysis on Comparison of Compressive Strength Prepared with Steel Tin Cans and Steel Fibre. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 169–172. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, F.; Li, C.; Hong, B. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites. Constr. Build. Mater. 2022, 315, 125710. [Google Scholar] [CrossRef]
- Li, C.; Yin, X.; Liu, Y.; Guo, R.; Xian, G. Long-term service evaluation of a pultruded carbon/glass hybrid rod exposed to elevated temperature, hydraulic pressure and fatigue load coupling. Int. J. Fatigue 2020, 134, 105480. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.L.; Xian, G.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Li, C.; Guo, R.; Xian, G.; Li, H. Innovative compound-type anchorage system for a large-diameter pultruded carbon/glass hybrid rod for bridge cable. Mater. Struct. 2020, 53, 1–15. [Google Scholar] [CrossRef]
- Nagar, P.A.; Gupta, N.; Kishore, K.; Parashar, A.K. Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete. Mater. Today Proc. 2021, 44, 113–117. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, N.; Singh, P.; Verma, M.; Parihar, H.S. Examine the effect of setting time and compressive strength of cement mortar paste using iminodiacetic acid. Mater. Today Proc. 2020, 32, 878–881. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.F. Axial strength of eccentrically loaded FRP-confined short concrete columns. Polymers 2020, 12, 1261. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Nardi, D.C.; Zhou, X.; Picón, R.A.; Flórez-López, J. A new comprehensive model of damage for flexural subassemblies prone to fatigue. Comput. Struct. 2021, 256, 106639. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Y.; Nardi, D.C.; Wang, Y.; Wang, Y.; Liu, Z.; Picón, R.A.; Flórez-López, J. Damage Evolution Modeling for Steel Structures Subjected to Combined High Cycle Fatigue and High-Intensity Dynamic Loadings. Int. J. Struct. Stab. Dyn. 2020, 22, 1793–6764. [Google Scholar] [CrossRef]
- Chen, F.; Jin, Z.; Wang, E.; Wang, L.; Jiang, Y.; Guo, P.; Gao, X.; He, X. Relationship model between surface strain of concrete and expansion force of reinforcement rust. Sci. Rep. 2021, 11, 4208. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhong, Y.; Gao, X.; Jin, Z.; Wang, E.; Zhu, F.; Shao, X.; He, X. Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete. Sci. Rep. 2021, 11, 8741. [Google Scholar] [CrossRef]
- Mousavi, A.A.; Zhang, C.; Masri, S.F.; Gholipour, G. Structural damage detection method based on the complete ensemble empirical mode decomposition with adaptive noise: A model steel truss bridge case study. Struct. Health Monit. 2022, 21, 887–912. [Google Scholar] [CrossRef]
- Zhang, S.S.; Yu, T.; Chen, G.M. Reinforced concrete beams strengthened in flexure with near-surface mounted (NSM) CFRP strips: Current status and research needs. Compos. Part. B Eng. 2017, 131, 30–42. [Google Scholar] [CrossRef]
- Ghorbani, M.; Mostofinejad, D.; Hosseini, A. Experimental investigation into bond behavior of FRP-to-concrete under mixed-mode I/II loading. Constr. Build. Mater. 2017, 132, 303–312. [Google Scholar] [CrossRef]
- Bakay, R.; Shrive, N.G.; Sayed-Ahmed, E.Y. Bond Strength of FRP Laminates to Concrete: State-of-the-Art Review. Electron. J. Struct. Eng. 2009, 9, 45–61. [Google Scholar]
- Xu, J.; Wu, Z.; Chen, H.; Shao, L.; Zhou, X.; Wang, S. Influence of dry-wet cycles on the strength behavior of basalt-fiber reinforced loess. Eng. Geol. 2022, 302, 106645. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J.; Chen, H.; Shao, L.; Zhou, X.; Wang, S. Shear Strength and Mesoscopic Characteristics of Basalt Fiber–Reinforced Loess after Dry–Wet Cycles. J. Mater. Civil. Eng. 2022, 34, 6. [Google Scholar] [CrossRef]
- Huang, H.; Huang, M.; Zhang, W.; Pospisil, S.; Wu, T. Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings. J. Struct. Eng. 2020, 146, 8. [Google Scholar] [CrossRef]
- Wei, J.; Xie, Z.; Zhang, W.; Luo, X.; Yang, Y.; Chen, B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng. Struct. 2021, 230, 111599. [Google Scholar] [CrossRef]
- Teng, J.; Chen, J.-F.; Yu, T. FRP-Strengthened RC Structures.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Dai Minh Nguyen, B.; Khuan Chan, T.; Kiat Cheong, H. Brittle Failure and Bond Development Length of Cfrp-Concrete Beams. J. Compos. Constr. 2001, 5, 12–17. [Google Scholar] [CrossRef]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. I: Review of debonding strength models. Eng. Struct. 2002, 24, 385–395. [Google Scholar] [CrossRef]
- Lu, Z.; Xian, G.; Li, H. Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates. Compos. Part. B Eng. 2015, 77, 421–430. [Google Scholar] [CrossRef]
- Jiang, C.; Wan, B.; Wu, Y.F.; Omboko, J. Epoxy interlocking: A novel approach to enhance FRP-to-concrete bond behavior. Constr. Build. Mater. 2018, 193, 643–653. [Google Scholar] [CrossRef]
- Chajes, M.J.; Finch, W.W.; Januszka, T.F.; Thomson, T.A. Bond and force transfer of composite material plates bonded to concrete. ACI Struct. J. 1996, 93, 208–217. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Mahmoudabadi, E. Grooving as Alternative Method of Surface Preparation to Postpone Debonding of FRP Laminates in Concrete Beams. J. Compos. Constr. 2010, 14, 804–811. [Google Scholar] [CrossRef]
- Nanni, A. FRP Reinforcement for Bridge Structures. In Proceedings, Strucural Engineering Conference; The University of Kansas: Lawrence, KS, USA, 2000; Volume 5, pp. 1–5. [Google Scholar]
- Jung, W.T.; Park, J.S.; Kang, J.Y.; Keum, M.S. Flexural behavior of concrete beam strengthened by near-surface mounted CFRP reinforcement using equivalent section model. Adv. Mater. Sci. Eng. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Bencardino, F.; Condello, A.; Ashour, A.F. Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints. Compos. Part. B Eng. 2017, 110, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Heydari Mofrad, M.; Mostofinejad, D.; Hosseini, A. A generic non-linear bond-slip model for CFRP composites bonded to concrete substrate using EBR and EBROG techniques. Compos. Struct. 2019, 220, 31–44. [Google Scholar] [CrossRef]
- Al-Jaberi, Z.; Myers, J.J.; Chandrashekhara, K. Effect of direct service temperature exposure on the bond behavior between advanced composites and CMU using NSM and EB techniques. Compos. Struct. 2019, 211, 63–75. [Google Scholar] [CrossRef]
- Bardhan, A.; Samui, P.; Ghosh, K.; Gandomi, A.H.; Bhattacharyya, S. ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions. Appl. Soft Comput. 2021, 110. [Google Scholar] [CrossRef]
- Biswas, R.; Samui, P.; Rai, B. Determination of compressive strength using relevance vector machine and emotional neural network. Asian J. Civil. Eng. 2019, 20, 1109–1118. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed, M.F. Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp. Geotech. 2021, 30, 100608. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, B.; Biswas, R.; Samui, P.; Kim, D. Prediction of rapid chloride permeability of self-compacting concrete using Multivariate Adaptive Regression Spline and Minimax Probability Machine Regression. J. Build. Eng. 2020, 32, 34008. [Google Scholar] [CrossRef]
- Biswas, R.; Rai, B. Effect of cementing efficiency factor on the mechanical properties of concrete incorporating silica fume. J. Struct. Integr. Maint. 2020, 5, 190–203. [Google Scholar] [CrossRef]
- Biswas, R.; Rai, B.; Samui, P.; Roy, S.S. Estimating concrete compressive strength using MARS, LSSVM and GP. Eng. J. 2020, 24, 41–52. [Google Scholar] [CrossRef]
- Biswas, R.; Bardhan, A.; Samui, P.; Rai, B.; Nayak, S.; Armaghani, D.J. Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete. Comput. Concr. 2021, 28, 221–232. [Google Scholar] [CrossRef]
- Khan, M.A.; Memon, S.A.; Farooq, F.; Javed, M.F.; Aslam, F.; Alyousef, R. Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest. Adv. Civil. Eng. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Khan, K.; Iqbal, M.; Napiah, M.; Zoorob, S.E.; Klemeš, J.J.; Bokhari, A.; Rafiq, W. Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network (ANN). J. Clean. Prod. 2022, 340, 130840. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, D.; Jalal, F.E.; Faisal Javed, M. Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment. Ocean. Engineering 2021, 232. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhao, Q.; Zhang, D.; Jalal, F.E.; Jamal, A. Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct./Mater. Et Constr. 2021, 232, 109134. [Google Scholar] [CrossRef]
- Zhang, D.; Gu, X.L.; Yu, Q.Q.; Huang, H.; Wan, B.; Jiang, C. Fully probabilistic analysis of FRP-to-concrete bonded joints considering model uncertainty. Compos. Struct. 2018, 185, 786–806. [Google Scholar] [CrossRef]
- Huang, H.; Guo, M.; Zhang, W.; Huang, M. Seismic Behavior of Strengthened RC Columns under Combined Loadings. J. Bridge Eng. 2022, 27, 32009. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Yang, R.; Liu, P. Experimental Analysis of Bearing Capacity of Basalt Fiber Reinforced Concrete Short Columns under Axial Compression. Coatings 2022, 12, 654. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Huang, Y. Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars. Archiv. Civ. Mech. Eng. 2022, 22, 171. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, T.; Cen, M.; Wang, J.; Zhao, X.; Zeng, C.; Zhou, Y.; Fan, Y.; Liu, Y.; Zhao, Z. Research progress on lunar and Martian concrete. Constr. Build. Mater. 2022, 343, 128117. [Google Scholar] [CrossRef]
- Sun, D.; Huo, J.; Chen, H.; Dong, Z.; Ren, R. Experimental study of fretting fatigue in dovetail assembly considering temperature effect based on damage mechanics method. Eng. Fail. Anal. 2022, 131, 105812. [Google Scholar] [CrossRef]
- Hao, R.B.; Lu, Z.Q.; Ding, H.; Chen, L.Q. A nonlinear vibration isolator supported on a flexible plate: Analysis and experiment. Nonlinear Dyn. 2022, 108, 941–958. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Q.; Yu, Z.; Wang, H.; Zhang, T. Influence of Y2o3 Addition on the Microstructure of Tic Reinforced Ti-Based Composite Coating Prepared by Laser Cladding. SSRN Electron. J. 2022, 4, 84718. [Google Scholar] [CrossRef]
- Liu, S.; Sai, Q.; Wang, S.; Williams, J. Effects of Laser Surface Texturing and Lubrication on the Vibrational and Tribological Performance of Sliding Contact. Lubricants 2022, 10, 10. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, L.; Wang, Y.; Chen, X. Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures. Int. J. Fatigue 2021, 151, 106386. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, L.; Sun, L. Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach. Front. Struct. Civil. Eng. 2022, 16, 267–280. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Kong, Z.; He, J. Development of Similar Materials for Liquid-Solid Coupling and Its Application in Water Outburst and Mud Outburst Model Test of Deep Tunnel. Geofluids 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Shi, L.; Xiao, X.; Wang, X.; Liang, H.; Wang, D. Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks. Constr. Build. Mater. 2022, 12, 340. [Google Scholar] [CrossRef]
- Shi, T.; Liu, Y.; Zhang, Y.; Lan, Y.; Zhao, Q.; Zhao, Y.; Wang, H. Calcined Attapulgite Clay as Supplementary Cementing Material: Thermal Treatment, Hydration Activity and Mechanical Properties. Int. J. Concr. Struct. Mater. 2022, 16, 1. [Google Scholar] [CrossRef]
- Lan, M.Y.; Zheng, M.B.; Shi, T.; Ma, C.; Liu, Y.; Zhao, Z. Crack resistance property of carbon nanotubes-modified concrete. Mag. Concr. Res. 2022, 21, 227. [Google Scholar] [CrossRef]
- Prakash, S.; Kumar, S.; Biswas, R.; Rai, B. Influence of silica fume and ground granulated blast furnace slag on the engineering properties of ultra-high-performance concrete. Innov. Infrastruct. Solut. 2022, 7, 117. [Google Scholar] [CrossRef]
- Biswas, R.; Rai, B. Efficiency Concepts and Models that Evaluates the Strength of Concretes Containing Different Supplementary Cementitious Materials. Civil. Eng. J. 2019, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Bardhan, A.; Biswas, R.; Kardani, N.; Iqbal, M.; Samui, P.; Singh, M.P.; Asteris, P.G. A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Constr. Build. Mater. 2022, 337, 127454. [Google Scholar] [CrossRef]
- Biswas, R.; Rai, B.; Samui, P. Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique. Innov. Infrastruct. Solut. 2021, 6, 41062. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, V.; Biswas, R.; Samui, P.; Kaloop, M.R.; Alzara, M.; Yosri, A.M. Hybrid ELM and MARS-Based Prediction Model for Bearing Capacity of Shallow Foundation. Processes 2022, 10, 5. [Google Scholar] [CrossRef]
- Vu, D.T.; Hoang, N.D. Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach. Struct. Infrastruct. Eng. 2016, 12, 1153–1161. [Google Scholar] [CrossRef]
- Hoang, N.D. Estimating punching shear capacity of steel fibre reinforced concrete slabs using sequential piecewise multiple linear regression and artificial neural network. Meas. J. Int. Meas. Confed. 2019, 137, 58–70. [Google Scholar] [CrossRef]
- Abuodeh, O.R.; Abdalla, J.A.; Hawileh, R.A. Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques. Compos. Struct. 2020, 234, 11–16. [Google Scholar] [CrossRef]
- Su, M.; Zhong, Q.; Peng, H.; Li, S. Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete. Constr. Build. Mater. 2021, 270, 12–24. [Google Scholar] [CrossRef]
- Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models; MIT Press: Cambrdige, MA, USA, 2001. [Google Scholar]
- Lu, M.; AbouRizk, S.M.; Hermann, U.H. Sensitivity Analysis of Neural Networks in Spool Fabrication Productivity Studies. J. Comput. Civil. Eng. 2001, 15, 299–308. [Google Scholar] [CrossRef]
- Gupta, A. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater. Today Proc. 2021, 44, 23–28. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Huang, G.-B.; Kheong Siew, C.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks Sentence level sentiment analysis View project Neural Networks View project Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Kim, D.; Samui, P.; Zhou, A. Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. J. Build. Eng. 2021, 35, 102105. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Samui, P. Application of Artificial Intelligence in Geo-Engineering. Springer Ser. Geomech. Geoengin. 2019, 2019, 30–44. [Google Scholar] [CrossRef]
- Bardhan, A.; Kardani, N.; GuhaRay, A.; Burman, A.; Samui, P.; Zhang, Y. Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment. J. Rock Mech. Geotech. Eng. 2021, 13, 1398–1412. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 99–109. [Google Scholar] [CrossRef]
- Liang, Q.Q. Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms. J. Constr. Steel Res. 2009, 65, 363–372. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.E.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Processing Syst. 1997, 56, 281–287. [Google Scholar]
- Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput. Electron. Agric. 2006, 51, 99–109. [Google Scholar] [CrossRef]
- Trebar, M.; Steele, N. Application of distributed SVM architectures in classifying forest data cover types. Comput. Electron. Agric. 2008, 63, 119–130. [Google Scholar] [CrossRef]
- Padmini, D.; Ilamparuthi, K.; Sudheer, K.P. Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 2008, 35, 33–46. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.-S.; Wang, Y.; Li, J. Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes. Eur. J. Environ. Civil. Eng. 2017, 21, 1341–1362. [Google Scholar] [CrossRef]
- Bardhan, A.; GuhaRay, A.; Gupta, S.; Pradhan, B.; Gokceoglu, C. A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor. Transp. Geotech. 2022, 32, 100678. [Google Scholar] [CrossRef]
- Pradeep, T.; GuhaRay, A.; Bardhan, A.; Samui, P.; Kumar, S.; Armaghani, D.J. Reliability and Prediction of Embedment Depth of Sheet pile Walls Using Hybrid ANN with Optimization Techniques. Arab. J. Sci. Eng. 2022, 23, 1–19. [Google Scholar] [CrossRef]
- Ghani, S.; Kumari, S.; Bardhan, A. A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sadhana–Acad. Proc. Eng. Sci. 2021, 46, 113. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Gupta, S.; Samui, P.; Nazem, M.; Zhang, Y.; Zhou, A. Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine. Acta Geotech. 2021, 33, 1–17. [Google Scholar] [CrossRef]
- Bardhan, A.; Samui, P. Application of Artificial Intelligence Techniques in Slope Stability Analysis: A Short Review and Future Prospects. Int. J. Geotech. Earthq. Eng. 2022, 13, 1–22. [Google Scholar] [CrossRef]
- Pradeep, T.; Bardhan, A.; Burman, A.; Samui, P. Rock Strain Prediction Using Deep Neural Network and Hybrid Models of ANFIS and Meta-Heuristic Optimization Algorithms. Infrastructures 2021, 6, 129. [Google Scholar] [CrossRef]
- Bardhan, A.; Kardani, N.; Alzoùbi, A.K.; Roy, B.; Samui, P.; Gandomi, A.H. Novel integration of extreme learning machine and improved Harris hawks optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter. J. Rock Mech. Geotech. Eng. 2022, 14, 8–21. [Google Scholar] [CrossRef]
- Dhilipkumar, B.; Bardhan, A.; Samui, P.; Kumar, S. Predicting Probability of Liquefaction Susceptibility Based on a Wide Range of CPT Data. Int. J. Geotech. Earthq. Eng. 2021, 12, 18–41. [Google Scholar]
- Bardhan, A.; Manna, P.; Kumar, V.; Burman, A.; Zlender, B.; Samui, P. Reliability Analysis of Piled Raft Foundation Using a Novel Hybrid Approach of ANN and Equilibrium Optimizer. CMES Comput. Modeling Eng. Sci. 2022, 128, 1033–1067. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Asteris, P.G.; Zhou, A. Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients. Int. J. Therm. Sci. 2022, 173, 107427. [Google Scholar]
- Kumar, M.; Bardhan, A.; Samui, P.; Hu, J.W.; Kaloop, M.R. Reliability Analysis of Pile Foundation Using Soft Computing Techniques: A Comparative Study. Processes 2021, 9, 3. [Google Scholar] [CrossRef]
- Bardhan, A.; Gokceoglu, C.; Burman, A.; Samui, P.; Asteris, P.G. Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Eng. Geol. 2021, 291, 106239. [Google Scholar] [CrossRef]
- Bardhan, A.; Kardani, N.; Alzo’ubi, A.K.; Samui, P.; Gandomi, A.H.; Gokceoglu, C. A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index. Arch. Comput. Methods Eng. 2022, 56, 1–39. [Google Scholar]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Lourenço, P.B. Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests. Constr. Build. Mater. 2021, 303, 124450. [Google Scholar] [CrossRef]
- Biswas, R.; Li, E.; Zhang, N.; Kumar, S.; Rai, B.; Zhou, J. Development of Hybrid Models Using Metaheuristic Optimization Techniques to Predict the Carbonation Depth of Fly Ash Concrete. SSRN Electron. J. 2022, 346, 128483. [Google Scholar] [CrossRef]
- Bardhan, A.; Samui, P. Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm. Transp. Geotech. 2022, 37, 100815. [Google Scholar] [CrossRef]
- Topal, U.; Goodarzimehr, V.; Bardhan, A.; Vo-Duy, T.; Shojaee, S. Maximization of the fundamental frequency of the FG-CNTRC quadrilateral plates using a new hybrid PSOG algorithm. Compos. Struct. 2022, 295, 115823. [Google Scholar] [CrossRef]
- Amjad Raja, M.N.; Abbas Jaffar, S.T.; Bardhan, A.; Shukla, S.K. Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling. J. Rock Mech. Geotech. Eng. 2022, 1674–7755. [Google Scholar] [CrossRef]
- Das, G.; Burman, A.; Bardhan, A.; Kumar, S.; Choudhary, S.S.; Samui, P. Risk estimation of soil slope stability problems. Arab. J. Geosci. 2022, 15, 1–16. [Google Scholar]
- Chandra, S.; Agrawal, S.; Chauhan, D.S. Soft computing based approach to evaluate the performance of solar PV module considering wind effect in laboratory condition. Energy Rep. 2018, 4, 252–259. [Google Scholar] [CrossRef]
- Bhadana, V.; Jalal, A.S.; Pathak, P. A comparative study of machine learning models for COVID-19 prediction in India. In Proceedings of the 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; 2020. [Google Scholar] [CrossRef]
- Pandey, S.K.; Janghel, R.R.; Mishra, P.K.; Kaabra, R. Machine learning based COVID -19 disease recognition using CT images of SIRM database. J. Med. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Rathor, S.; Jadon, R.S. Acoustic domain classification and recognition through ensemble based multilevel classification. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3617–3627. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2021, 0123456789, 1–20. [Google Scholar] [CrossRef]
Descriptive Statistic | Input Variables | Target Variable | ||||
---|---|---|---|---|---|---|
Elastic Modulus of FRP x Thickness of FRP, Ef tf | Width of FRP, bf | Concrete Compressive Strength, fc | Width of Groove, bg | Depth of Groove, hg | Ultimate Capacity, p | |
Unit | GPa-mm | mm | MPa | mm | mm | KN |
Mean | 40.33 | 46.10 | 33.72 | 7.94 | 10.33 | 12.05 |
Standard Error | 2.18 | 1.01 | 0.73 | 0.21 | 0.30 | 0.37 |
Median | 39.10 | 50.00 | 32.70 | 10.00 | 10.00 | 11.11 |
Mode | 78.20 | 60.00 | 26.70 | 10.00 | 10.00 | 9.87 |
Standard Deviation | 25.41 | 11.81 | 8.49 | 2.47 | 3.45 | 4.32 |
Sample Variance | 645.42 | 139.52 | 72.15 | 6.10 | 11.93 | 18.65 |
Kurtosis | −1.23 | −1.49 | −1.11 | −1.90 | −0.88 | 0.30 |
Skewness | 0.58 | −0.13 | 0.49 | −0.36 | −0.09 | 0.80 |
Range | 65.30 | 30.00 | 25.50 | 5.00 | 10.00 | 20.73 |
Minimum | 12.90 | 30.00 | 22.70 | 5.00 | 5.00 | 4.76 |
Maximum | 78.20 | 60.00 | 48.20 | 10.00 | 15.00 | 25.49 |
Sum | 5484.80 | 6270.00 | 4585.40 | 1080.00 | 1405.00 | 1638.72 |
Count | 136.00 | 136.00 | 136.00 | 136.00 | 136.00 | 136.00 |
Confidence Level (95.0%) | 4.31 | 2.00 | 1.44 | 0.42 | 0.59 | 0.73 |
Indices | R2 | PI | VAF | WI | RMSE | MAE | RSR | WMAPE |
---|---|---|---|---|---|---|---|---|
Ideal Value | 1 | 2 | 100 | 1 | 0 | 0 | 0 | 0 |
Indices | ANN | ELM | GMDH | MARS | LSSVM | GPR | HENS |
---|---|---|---|---|---|---|---|
R2 | 0.9159 | 0.7881 | 0.9154 | 0.9496 | 0.9346 | 0.9775 | 0.9783 |
PI | 1.7674 | 1.4722 | 1.7668 | 1.8509 | 1.8139 | 1.9233 | 1.9256 |
VAF | 91.4997 | 78.8134 | 91.4947 | 94.9583 | 93.4556 | 97.7493 | 97.8314 |
WI | 0.9767 | 0.9376 | 0.9768 | 0.9869 | 0.9827 | 0.9943 | 0.9945 |
RMSE | 0.0594 | 0.0938 | 0.0595 | 0.0458 | 0.0521 | 0.0306 | 0.0300 |
MAE | 0.0448 | 0.0735 | 0.0431 | 0.0357 | 0.0391 | 0.0214 | 0.0212 |
RSR | 0.2916 | 0.4603 | 0.2917 | 0.2245 | 0.2558 | 0.1500 | 0.1474 |
WMAPE | 0.1254 | 0.2076 | 0.1217 | 0.1004 | 0.1107 | 0.0604 | 0.0601 |
Indices | ANN | ELM | GMDH | MARS | LSSVM | GPR | HENS |
---|---|---|---|---|---|---|---|
R2 | 0.9290 | 0.8647 | 0.9359 | 0.9121 | 0.9226 | 0.8404 | 0.9421 |
PI | 1.7721 | 1.6148 | 1.7759 | 1.7355 | 1.7566 | 1.5489 | 1.7957 |
VAF | 92.1975 | 86.4653 | 92.0816 | 91.0821 | 91.7866 | 83.7030 | 92.8774 |
WI | 0.9776 | 0.9620 | 0.9740 | 0.9769 | 0.9753 | 0.9560 | 0.9775 |
RMSE | 0.0620 | 0.0823 | 0.0655 | 0.0665 | 0.0655 | 0.0904 | 0.0613 |
MAE | 0.0514 | 0.0716 | 0.0519 | 0.0482 | 0.0526 | 0.0757 | 0.0443 |
RSR | 0.2794 | 0.3708 | 0.2953 | 0.2996 | 0.2950 | 0.4076 | 0.2764 |
WMAPE | 0.1489 | 0.2075 | 0.1505 | 0.1395 | 0.1523 | 0.2192 | 0.1284 |
Basis Function | Models |
---|---|
BF1 | max (0, Ef tf − 0.18989) |
BF2 | max (0, 0.18989 − Ef tf) |
BF3 | max (0, bf − 0.66667) |
BF4 | max (0, 0.66667 − bf) |
BF5 | BF1 ×max (0, bf − 0.33333) |
BF6 | BF1 × max (0, 0.33333 − bf) |
BF7 | BF3 × max (0, fc − 0.39216) |
BF8 | BF1 × max (0, fc − 0.54118) |
BF9 | BF1 × max (0, 0.54118 − fc) |
BF10 | BF1 × max (0, 0.59608 − fc) |
BF11 | BF3 × max (0, Ef tf − 0.40123) |
BF12 | max (0, fc − 0.98824) × max (0, Ef tf + 0) |
Indices | ANN | ELM | GMDH | MARS | LSSVM | GPR | HENS |
---|---|---|---|---|---|---|---|
R2 | 0.9184 | 0.8052 | 0.9167 | 0.9408 | 0.9303 | 0.9452 | 0.9663 |
PI | 1.7719 | 1.5112 | 1.7677 | 1.8286 | 1.8025 | 1.8395 | 1.8927 |
VAF | 91.6594 | 80.5153 | 91.4986 | 94.0692 | 92.9899 | 94.5057 | 96.6002 |
WI | 0.9769 | 0.9435 | 0.9763 | 0.9846 | 0.9811 | 0.9859 | 0.9911 |
RMSE | 0.0599 | 0.0917 | 0.0607 | 0.0506 | 0.0550 | 0.0487 | 0.0383 |
MAE | 0.0461 | 0.0731 | 0.0448 | 0.0382 | 0.0418 | 0.0321 | 0.0258 |
RSR | 0.2888 | 0.4415 | 0.2924 | 0.2436 | 0.2652 | 0.2347 | 0.1847 |
WMAPE | 0.1300 | 0.2076 | 0.1273 | 0.1080 | 0.1188 | 0.0914 | 0.0734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabdullh, A.A.; Biswas, R.; Gudainiyan, J.; Khan, K.; Bujbarah, A.H.; Alabdulwahab, Q.A.; Amin, M.N.; Iqbal, M. Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete. Polymers 2022, 14, 3505. https://doi.org/10.3390/polym14173505
Alabdullh AA, Biswas R, Gudainiyan J, Khan K, Bujbarah AH, Alabdulwahab QA, Amin MN, Iqbal M. Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete. Polymers. 2022; 14(17):3505. https://doi.org/10.3390/polym14173505
Chicago/Turabian StyleAlabdullh, Anas Abdulalem, Rahul Biswas, Jitendra Gudainiyan, Kaffayatullah Khan, Abdullah Hussain Bujbarah, Qasem Ahmed Alabdulwahab, Muhammad Nasir Amin, and Mudassir Iqbal. 2022. "Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete" Polymers 14, no. 17: 3505. https://doi.org/10.3390/polym14173505
APA StyleAlabdullh, A. A., Biswas, R., Gudainiyan, J., Khan, K., Bujbarah, A. H., Alabdulwahab, Q. A., Amin, M. N., & Iqbal, M. (2022). Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete. Polymers, 14(17), 3505. https://doi.org/10.3390/polym14173505