MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Synthesis of MOFs Materials
2.2.1. Synthesis of MOF801
2.2.2. Synthesis of UIO66
2.2.3. Synthesis of AlOOH
2.2.4. Synthesis of UIO66/AlOOH and UIO66/MOF801
2.3. Fabrication of Devices
2.4. Characterization
3. Results and Discussion
3.1. Material Characterization
3.2. Electricity Generation from Evaporation
3.3. Mechanism
4. Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmood, A.; Wang, J.L. Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy Environ. Sci. 2021, 14, 90–105. [Google Scholar] [CrossRef]
- Liu, X.; Gao, H.; Ward, J.E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Z.; Hao, M.; Wang, S.; Sun, F.; Zhao, Z.; Zhang, T. Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems. Nano Lett. 2019, 19, 5544–5552. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L.; et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Chen, T.; Xu, J.L.; Li, G.; Wang, K.Y. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 2020, 8, 513–531. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, B.; Hu, N.; Wang, H. Low-cost and facile fabrication of a candle soot/adsorbent cotton 3D-interfacial solar steam generation for effective water evaporation. Sol. Energy Mater Sol. Cells 2021, 221, 110876. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; He, T.; Huang, Y.; Cheng, H.; Li, C.; Xie, D.; Yang, P.; Zhang, Y.; Qu, L. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 2021, 16, 811–819. [Google Scholar] [CrossRef]
- Bae, J.; Yun, T.G.; Suh, B.L.; Kim, J.; Kim, I.-D. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 2020, 13, 527–534. [Google Scholar] [CrossRef]
- Jiao, S.; Liu, M.; Li, Y.; Abrha, H.; Wang, J.; Dai, Y.; Li, J.; Kang, N.; Li, Y.; Liu, X. Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review. Carbon 2022, 193, 339–355. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119. [Google Scholar] [CrossRef]
- Yang, P.; Liu, K.; Chen, Q.; Li, J.; Duan, J.; Xue, G.; Xu, Z.; Xie, W.; Zhou, J. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 2017, 10, 1923–1927. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Z.; Li, X.; Xu, W.; Xu, S.; Zhang, S.; Xu, Z.; Chen, H.; Lin, S. Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon 2016, 105, 199–204. [Google Scholar] [CrossRef]
- Yun, T.G.; Bae, J.; Rothschild, A.; Kim, I.-D. Transpiration Driven Electrokinetic Power Generator. ACS Nano 2019, 13, 12703–12709. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.L.; He, Q.Y.; Yin, P.F.; Cheng, H.F.; Cui, X.Y.; Yun, Q.B.; Zhang, H. Rational Design of MOF-Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation. Adv. Mater. 2020, 32, 2003720. [Google Scholar] [CrossRef]
- Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-Printed Porous Carbon Film for Electricity Generation from Evaporation-Driven Water Flow. Adv. Funct. Mater. 2017, 27, 1700551. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Tang, J.; Salunkhe, R.R.; Jiang, X.C.; Yu, A.B.; Wu, K.C.W.; Yamauchi, Y. Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1604898. [Google Scholar] [CrossRef]
- Meng, L.Y.; Yu, B.Y.; Qin, Y. Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Commun. Chem. 2021, 4, 82. [Google Scholar] [CrossRef]
- Wang, S.Z.; McGuirk, C.M.; d’Aquino, A.; Mason, J.A.; Mirkin, C.A. Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30, 1800202. [Google Scholar] [CrossRef]
- Gao, X.; Xu, T.; Shao, C.X.; Han, Y.Y.; Lu, B.; Zhang, Z.P.; Qu, L.T. Electric power generation using paper materials. J. Mater. Chem. A 2019, 7, 20574–20578. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Chen, D.; Wan, X.; Wang, X.; Fang, Z.; Peng, X. Polyaniline-Coated MOFs Nanorod Arrays for Efficient Evaporation-Driven Electricity Generation and Solar Steam Desalination. Adv. Sci. 2021, 8, 2004552. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Ding, T.P.; Yang, P.H.; Duan, J.J.; Zhou, J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019, 58, 797–802. [Google Scholar] [CrossRef]
- Chueh, C.-C.; Chen, C.-I.; Su, Y.-A.; Konnerth, H.; Gu, Y.-J.; Kung, C.-W.; Wu, K.C.W. Harnessing MOF materials in photovoltaic devices: Recent advances, challenges, and perspectives. J. Mater. Chem. A 2019, 7, 17079–17095. [Google Scholar] [CrossRef]
- Furukawa, H.; Gandara, F.; Zhang, Y.B.; Jiang, J.C.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Chen, C.Y.; Liu, Q.P.; Zhuo, Y.W.; Yuan, D.; Dai, Z.H.; Bao, J.C. Two-dimensional porous gamma-AlOOH and gamma-Al2O3 nanosheets: Hydrothermal synthesis, formation mechanism and catalytic performance. RSC Adv. 2015, 5, 71728–71734. [Google Scholar] [CrossRef]
- Pang, S.; Wu, Y.; Zhang, X.; Li, B.; Ouyang, J.; Ding, M. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochem. 2016, 51, 229–239. [Google Scholar] [CrossRef]
- Zuhra, Z.; Zhao, Z.; Qin, L.; Zhou, Y.; Zhang, L.; Ali, S.; Tang, F.; Ping, E. In situ formation of a multiporous MOF(Al)@γ-AlOOH composite material: A versatile adsorbent for both N- and S-heterocyclic fuel contaminants with high selectivity. Chem. Eng. J. 2019, 360, 1623–1632. [Google Scholar] [CrossRef]
- Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. J. Am. Chem. Soc. 2008, 130, 13664–13672. [Google Scholar] [CrossRef]
- Nan, J.; Dong, X.; Wang, W.; Jin, W. Formation mechanism of metal–organic framework membranes derived from reactive seeding approach. Microporous Mesoporous Mater. 2012, 155, 90–98. [Google Scholar] [CrossRef]
- Farzaneh, F.; Kabir, N.; Geravand, E.; Ghiasi, M.; Ghandi, M. Immobilization and DFT studies of Tin chloride on UiO-66 metal–organic frameworks as active catalyst for enamination of acetylacetone. J. Iran. Chem. Soc. 2019, 16, 2231–2241. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, H.H.; Zhang, Z.P.; Jiang, L.; Qu, L.T. Direct Power Generation from a Graphene Oxide Film under Moisture. Adv. Mater. 2015, 27, 4351–4357. [Google Scholar] [CrossRef]
- Abid, H.R.; Tian, H.; Ang, H.-M.; Tade, M.O.; Buckley, C.E.; Wang, S. Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 2012, 187, 415–420. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Shao, B.; Song, Z.; Wang, Y.; Qiao, J.; Di, J.; Wei, W.; Song, T.; Sun, B. Asymmetric Charged Conductive Porous Films for Electricity Generation from Water Droplets via Capillary Infiltrating. ACS Appl. Mater. Interfaces 2021, 13, 17902–17909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, T.; Suresh, L.; Qu, H.; Zhang, X.; Zhang, Q.; Yang, J.; Tan, S.C. Guaranteeing Complete Salt Rejection by Channeling Saline Water through Fluidic Photothermal Structure toward Synergistic Zero Energy Clean Water Production and In Situ Energy Generation. ACS Energy Lett. 2020, 5, 3397–3404. [Google Scholar] [CrossRef]
- Liu, K.; Ding, T.P.; Li, J.; Chen, Q.; Xue, G.B.; Yang, P.H.; Xu, M.; Wang, Z.L.; Zhou, J. Thermal-Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Adv. Energy Mater. 2018, 8, 1702481. [Google Scholar] [CrossRef]
- Huang, Y.X.; Cheng, H.H.; Yang, C.; Yao, H.Z.; Li, C.; Qu, L.T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856. [Google Scholar] [CrossRef]
- Wang, H.Y.; Cheng, H.H.; Huang, Y.X.; Yang, C.; Wang, D.B.; Li, C.; Qu, L.T. Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 2020, 67, 104238. [Google Scholar] [CrossRef]
- Huang, Y.X.; Cheng, H.H.; Yang, C.; Zhang, P.P.; Liao, Q.H.; Yao, H.Z.; Shi, G.Q.; Qu, L.T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166. [Google Scholar] [CrossRef]
- Tian, J.L.; Zang, Y.H.; Sun, J.C.; Qu, J.Y.; Gao, F.; Liang, G.Y. Surface charge density-dependent performance of Ni-Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy 2020, 70, 104502. [Google Scholar] [CrossRef]
- Zhou, X.B.; Zhang, W.L.; Zhang, C.L.; Tan, Y.; Guo, J.C.; Sun, Z.N.; Deng, X. Harvesting Electricity from Water Evaporation through Microchannels of Natural Wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239. [Google Scholar] [CrossRef]
- Yoon, S.G.; Yang, Y.; Yoo, J.; Jin, H.; Lee, W.H.; Park, J.; Kim, Y.S. Natural Evaporation-Driven Ionovoltaic Electricity Generation. ACS Appl. Electron. Mater. 2019, 1, 1746–1751. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Sun, X.; Li, Y.; Xu, H.; Tan, Y.; Li, Y.; Song, T.; Sun, B. Constant Electricity Generation in Nanostructured Silicon by Evaporation-Driven Water Flow. Angew. Chem. Int. Ed. 2020, 59, 10619–10625. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.F.; Cui, Z.Q.; Zhu, X.; Liu, X.H.; Wang, G.; Wang, J.Y.; Mei, T.; Li, J.H.; Wang, X.B. Functionalized carbon materials for efficient solar steam and electricity generation. Mater. Chem. Phys. 2019, 222, 159–164. [Google Scholar] [CrossRef]
- Hou, B.; Kong, D.; Qian, J.; Yu, Y.; Cui, Z.; Liu, X.; Wang, J.; Mei, T.; Li, J.; Wang, X. Flexible and portable graphene on carbon cloth as a power generator for electricity generation. Carbon 2018, 140, 488–493. [Google Scholar] [CrossRef]
- Li, L.; Hao, M.; Yang, X.; Sun, F.; Bai, Y.; Ding, H.; Wang, S.; Zhang, T. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020, 72, 104663. [Google Scholar] [CrossRef]
- Han, Y.; Pang, D.; Xiong, Z.; Zhao, X.; Li, C.; Pang, X.; Sun, J. Flexible Silicon Carbide Based Nano-generator Driven by Water Evaporation. Chem. Phys. 2020, 538, 110858. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Kong, X.; Jia, P.; Ji, D.; Quan, D.; Wang, L.; Wen, Q.; Lu, D.; Wu, J.; et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171. [Google Scholar] [CrossRef]
- Sun, J.; Li, P.; Qu, J.; Lu, X.; Xie, Y.; Gao, F.; Li, Y.; Gang, M.; Feng, Q.; Liang, H.; et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 2019, 57, 269–278. [Google Scholar] [CrossRef]
- Pei, J.; Huang, J.; Huang, Z.; Liu, K. Liquid flow-induced electricity in carbon nanomaterials. Sustain. Energy Fuels 2019, 3, 599–610. [Google Scholar] [CrossRef]
- Li, M.; Zong, L.; Yang, W.; Li, X.; You, J.; Wu, X.; Li, Z.; Li, C. Biological Nanofibrous Generator for Electricity Harvest from Moist Air Flow. Adv. Funct. Mater. 2019, 29, 1901798. [Google Scholar] [CrossRef]
Active Material | Solution | Voc (V) | Ist (μA) | Refs |
---|---|---|---|---|
UIO66/MOF801—KBF | 0.5 M NaCl | 0.329 ± 0.005 | 27.37 ± 1.63 | This work |
UIO66/AlOOH—KBF | 0.5 M NaCl | 0.275 ± 0.004 | 23.72 ± 1.61 | This work |
MOF801—KBF | 0.5 M NaCl | 0.289 ± 0.003 | 32.77 ± 1.92 | This work |
UIO66—KBF | 0.5 M NaCl | 0.268 ± 0.007 | 20.90 ± 1.14 | This work |
CNPs | Water | 0.89 | 0.38 | [34] |
GO+PAAS | Water | 0.6 | - | [35] |
SS–PVA | Water | 0.6 | 2 | [36] |
GO | Water | 1.5 | 0.136 | [37] |
AlOOH/UIO66 | Water | 1.63 ± 0.10 | 0.49 | [14] |
Ni-Al layered double hydroxide | Water | 0.6 | 0.3 | [38] |
Citric acid-modified wood | Water | 0.3 | 10 | [39] |
ZnO porous film | Water | 0.4 | 0.02 | [40] |
Silicon nanowire array | Water | 0.4 | 55 μA cm−2 | [41] |
Carbon black | Water | 0.005 | - | [42] |
Graphene/carbon cloth | 0.5 M NaCl | 0.37 | - | [43] |
Print paper | Water | 0.25 | 0.015 | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Dai, Y.; Jiao, S.; Liu, X. MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation. Polymers 2022, 14, 3509. https://doi.org/10.3390/polym14173509
Li J, Dai Y, Jiao S, Liu X. MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation. Polymers. 2022; 14(17):3509. https://doi.org/10.3390/polym14173509
Chicago/Turabian StyleLi, Jingyu, Yexin Dai, Shipu Jiao, and Xianhua Liu. 2022. "MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation" Polymers 14, no. 17: 3509. https://doi.org/10.3390/polym14173509
APA StyleLi, J., Dai, Y., Jiao, S., & Liu, X. (2022). MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation. Polymers, 14(17), 3509. https://doi.org/10.3390/polym14173509