Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis
Abstract
:1. Introduction
2. Carbon-Based Nanomaterials
2.1. Fullerenes
2.2. Quantum Dots
2.3. Carbon Nanotubes
2.4. Graphene and Its Derivatives
3. Forensic Analysis of Polymer/Carbon Nanomaterial Composites
3.1. Microscopic Techniques
3.2. Spectroscopic Techniques
3.3. Chromatographic Techniques
4. Applications of Polymer/Carbon Nanomaterials in Forensics
4.1. Detection of Illicit Drugs
4.2. Sensors for Doping Substances
4.3. Sensors for Toxins
4.4. Sensors for Explosives
4.5. Sensors for Toxic Gases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-F. Forensic applications of nanotechnology. J. Chin. Chem. Soc. 2011, 58, 828–835. [Google Scholar] [CrossRef]
- Lodha, A.S.; Pandya, A.; Shukla, R.K. Nanotechnology: An applied and robust approach for forensic investigation, Forensic Res. Criminol. Int. J. 2016, 2, 00044. [Google Scholar]
- Ganesh, E.N. Application of nanotechnology in forensic science. Environment 2016, 1. [Google Scholar]
- Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y. Recent Development of Nano-Materials Used in DNA Biosensors. Sensors 2009, 9, 5534–5557. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nano-structured materials: History, sources, toxicity and regulations Beilstein. J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Thakur, V.K. Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 2020, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M. Chemical Functionalization of Carbon Nanotubes with Polymers: A Brief Overview. Macromol 2021, 1, 6. [Google Scholar] [CrossRef]
- Kumar, N.; Kumbhat, S. (Eds.) Essentials in Nanoscience and Nanotechnology; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Díez-Pascual, A.M. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials 2022, 15, 3251. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.; Macedo, M.H.; Sarmento, B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov. Today 2018, 23, 944–959. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Diez-Vicente, A.L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [Google Scholar] [PubMed]
- Shoaie, N.; Daneshpour, M.; Azimzadeh, M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchim. Acta 2019, 186, 465. [Google Scholar]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods. J. Mater. Chem. B 2017, 5, 4084–4096. [Google Scholar] [PubMed]
- Pokropivny, V.V.; Skorokhod, V.V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 2007, 27, 990–993. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; Obrien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Kroto, H.W. C60: Buckminsterfullerene, The Celestial Sphere that Fell to Earth. Ang. Chem. Int. Ed. 1992, 31, 111–129. [Google Scholar]
- Yadav, J. Fullerene: Properties, synthesis and application. Res. Rev. J. Phys. 2018, 6, 1–6. [Google Scholar]
- Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomed. 2007, 2, 639. [Google Scholar]
- Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Sytnehsis and characterization of monodisperse nanocrystals and closely packaged nanocrystals assemblies. Ann. Rev. Mater. Res. 2000, 30, 547–610. [Google Scholar]
- Bera, D.; Qian, L.; Tseng, T-K. Holloway PH. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480. [Google Scholar] [PubMed]
- Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Use of quantum dots for live cell imaging. Nat. Method 2004, 1, 6. [Google Scholar]
- Zajac, A. Protein microarrays and quantum dot probes for early cancer detection. Coll. Surf. B Bioint. 2007, 58, 309–314. [Google Scholar]
- Yang, L.; Li, Y. Simultaneous detection of Escherichia coli O157[ratio]H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 2006, 131, 394–401. [Google Scholar]
- Iijima, S. Helical microtubules of graphite carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic-structure of chiral Graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206. [Google Scholar]
- Yu, M.F.B.; Files, S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical Properties. Phys. Rev. Lett. 2000, 84, 5552–5555. [Google Scholar] [PubMed]
- Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, M.S.; Selegue, J.P. Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry. Nano Lett. 2002, 2, 615–619. [Google Scholar]
- Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater 2007, 6, 183–191. [Google Scholar]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [PubMed]
- Díez-Pascual, A.M.; Luceño-Sánchez, J.A.; Peña Capilla, R.; Garcia Díaz, P. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar]
- Vedhanarayanan, B.; Praveen, V.K.; Das, G.; Ajayaghosh, A. Hybrid materials of 1D and 2D carbon allotropes and their synthetic π-systems. NPG Asia Mater. 2018, 10, 107–126. [Google Scholar]
- Bhattacharya, S.; Samanta, S.K. Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem. Rev. 2016, 116, 11967–12028. [Google Scholar]
- Mateos, R.; Vera, S.; Valiente, M.; Díez-Pascual, A.M.; San Andrés, M.P. Comparison of Anionic, Cationic and Nonionic Surfactants as Dispersing Agents for Graphene Based on the Fluorescence of Riboflavin. Nanomaterials 2017, 7, 403. [Google Scholar]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGovern, I.T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar]
- Sainz-Urruela, C.; Vera-López, S.; San Andrés, M.P.; Díez-Pascual, A.M. Graphene Oxides Derivatives Prepared by an Electrochemical Approach: Correlation between Structure and Properties. Nanomaterials 2020, 10, 2532. [Google Scholar]
- Díez-Pascual, A.M.; Sainz-Urruela, C.; Vallés, C.; Vera-López, S.; San Andrés, M.P. Tailorable Synthesis of Highly Oxidized Graphene Oxides via an Environmentally-Friendly Electrochemical Process. Nanomaterials 2020, 10, 239. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Luceño-Sánchez, J.A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A.M. Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials 2018, 8, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dua, V.; Surwade, S.P.; Ammu, S.; Agnihotra, S.R.; Jain, S.; Roberts, K.E.; Park, S.; Ruoff, R.S.; Manohar, S.K. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angew. Chem. Int. Ed 2010, 49, 2154–2157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, S.; Parihar, K.; Sankhla, M.S.; Kumar, R. Nano-forensic: New perspective and extensive applications in solving crimes. Nanobioletters 2020, 10, 1792–1798. [Google Scholar]
- Diez-Pascual, A.M. Environmentally friendly synthesis of poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate)/SnO2 nanocomposites. Polymers 2021, 13, 2445. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M. Effect of graphene oxide on the properties of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate). Polymers 2021, 13, 2233. [Google Scholar] [CrossRef]
- Pandey, G.; Tharmavaram, M.; Rawtani, D.; Kumar, S.; Agrawal, Y. Multifarious applications of atomic force microscopy in forensic science investigations. Forensic. Sci. Int 2017, 273, 53–63. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Wong, E. Effect of layer-by-layer confinement of polypeptides and polysaccharides onto thermoresponsive microgels: A comparative study. J. Colloid. Int. Sci. 2010, 347, 79–89. [Google Scholar] [CrossRef]
- Dendisová, M.; Jeništová, A.; Parchanská-Kokaislová, A.; Matêjka, P.; Prokopec, V.; Švecová, M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim 2018, 1031, 1–14. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Gascon, D. Carbon Nanotube Buckypaper Reinforced Acrylonitrile−Butadiene− Styrene Composites for Electronic Applications. ACS Appl. Mater. Interfaces 2013, 5, 12107–12119. [Google Scholar] [CrossRef] [PubMed]
- Luceño-Sanchez, J.A.; Peña Capilla, R.; Diez-Pascual, A.M. High-Performance PEDOT:PSS/Hexamethylene Diisocyanate-Functionalized Graphene Oxide Nanocomposites: Preparation and Properties. Polymers 2018, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Chen, J.; Pang, Z.; Li, S.; Ling, D.; Deng, F.; Kong, X. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv. Mater 2017, 29, 1605895. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zou, Y.; Ni, C.; Wang, R.; Wu, M.; Liang, C.; Zhang, J.; Yuan, X.; Liu, W. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography–mass spectrometry. J. Sep. Sci. 2017, 40, 4234–4245. [Google Scholar] [CrossRef] [PubMed]
- Laurila, T.; Sainio, S.; Caro, M.A. Hybrid Carbon Based Nanomaterials for Electrochemical Detection of Biomolecules. Prog. Mater. Sci. 2017, 88, 499–594. [Google Scholar] [CrossRef]
- Shi, H.; Xiang, W.; Liu, C.; Shi, H.; Zhou, Y.; Gao, L. Highly sensitive detection for cocaine using graphene oxide-aptamer based sensors in combination with tween 20. Nanosc. Nanotechnol. Lett. 2018, 10, 1707–1712. [Google Scholar] [CrossRef]
- Trouillon, R.; Combs, Z.; Patel, B.A.; O’Hare, D. Comparative Study of the Effect of Various Electrode Membranes on Biofouling and Electrochemical Measurements. Electrochem. Commun. 2009, 11, 1409–1413. [Google Scholar] [CrossRef]
- Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E.I.; Laurila, T.; Koskinen, J. Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and in human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega 2019, 4, 17726–17734. [Google Scholar] [CrossRef]
- Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Sainio, S.; Jiang, H.; Kauppinen, E.I.; Koskinen, J. Electrochemical detection of oxycodone and its main metabolites with Nafion-coated single-walled carbon nanotube electrodes. Anal. Chem. 2020, 92, 8218–8227. [Google Scholar] [CrossRef]
- Ansari, S.; Masoum, S. A hybrid imprinted polymer based on magnetic graphene oxide and carbon dots for ultrasonic assisted dispersive solid-phase microextraction of oxycodone. Microchem. J. 2021, 164, 105988. [Google Scholar] [CrossRef]
- Scott, L.J.; Perry, C.M. Tramadol: A review of its use in perioperative pain. Drugs 2000, 60, 139–176. [Google Scholar] [CrossRef] [PubMed]
- Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin. Pharm. 2004, 43, 879–923. [Google Scholar] [CrossRef] [PubMed]
- Cobianchi, M.R. Study of codeine-paracetamol combination treatment compared with tramadol-paracetamol in the control of moderate-to-severe low back pain. Minerva Med. 2012, 103, 177–182. [Google Scholar]
- Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J. 2020, 158, 105179. [Google Scholar] [CrossRef]
- Bagheri, A.; Shirzadmehr, M.; Rezaei, H.; Khoshsafar. Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid. Ionics 2018, 24, 833–843. [Google Scholar] [CrossRef]
- Jagriti, N.; NiteshMalhotra, B.N.; ChaitaliSinghal, A.; AshishMathur, A.; Dhritiman Chakraborty, A.; AnusreeAnil, A.; AvirajIngle, A.; Chandras Pundir. Point of care with micro fluidic paper based device integrated with nano zeolite–graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosen. Bioelectron. 2017, 88, 249–257. [Google Scholar]
- Fu, K.; Zhang, R.; He, J.; Bai, H.; Zhang, G. Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens. Bioelectron. 2019, 143, 111636. [Google Scholar] [CrossRef]
- Saisahas, K.; Soleh, A.; Somsiri, S.; Senglan, P.; Promsuwan, K.; Saichanapan, J.; Kanatharana, P.; Thavarungkul, P.; Lee, K.; Chang, K.H. Electrochemical Sensor for Methamphetamine Detection Using Laser-Induced Porous Graphene Electrode. Nanomaterials 2022, 12, 73. [Google Scholar] [CrossRef]
- Riahifar, V.; Haghnazari, N.; Keshavarzi, F.; Ahmadi, E. A sensitive voltammetric sensor for methamphetamine determination based on modified glassy carbon electrode using Fe3O4@ poly pyrrole core-shell and graphene oxide. Microchem. J. 2021, 170, 106748. [Google Scholar] [CrossRef]
- Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst 2019, 144, 4639–4646. [Google Scholar] [CrossRef]
- Rocha, R.G.; Ribeiro, J.S.; Santana, M.H.; Richter, E.M.; Muñoz, R.A. 3D-printing for forensic chemistry: Voltammetric determination of cocaine on additively manufactured graphene–polylactic acid electrodes. Anal. Methods 2021, 13, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.M.; Mendonça, D.M.; Silva, W.P.; Silva, M.N.; Nossol, E.; da Silva, R.A.; Richter, E.M.; Muñoz, R.A. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal. Chim. Acta 2018, 1033, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Bagheri, H.; Afkhami, A.; Ardakani, Y.H.; Madrakian, T. Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal. Chim. Acta 2017, 996, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Colón, K.; Chavez-Arias, C.; Díaz-Alcalá, J.E.; Martínez, M.A. Xylazine intoxication in humans and its importance as an emerging adulterant in abused drugs: A comprehensive review of the literature. Forensic. Sci. Int. 2014, 240, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.M.J.; Maurer, H.H. Qualitative metabolism assessment and toxicological detection of xylazine, a veterinary tranquilizer and drug of abuse, in rat and human urine using GC-MS, LC-MSn, and LC-HR-MSn. Anal. Bioanal. Chem. 2013, 405, 9779–9789. [Google Scholar] [CrossRef] [PubMed]
- Silva-Torres, L.; Veléz, C.; Alvarez, L.; Zayas, B. Xylazine as a drug of abuse and its effects on the generation of reactive species and DNA damage on human umbilical vein endothelial cells. J. Toxicol. 2014, 2014, 492609. [Google Scholar] [CrossRef]
- Saisahas, K.; Promsuwan, K.; Saichanapan, J.; Phonchai, A.; Mohamed Sadiq, N.S.; Teoh, W.K.; Chang, K.H.; Abdullah, A.F.L.; Limbut, W. Nanocoral Polyaniline-Modified Graphene-Based Electrochemical Paper-Based Analytical Device for a Portable Electrochemical Sensor for Xylazine Detection. ACS Omega 2022, 7, 13913–13924. [Google Scholar] [CrossRef]
- Mazzei, F. Afinity based biosensors in sport medicine and doping control analysis. Bioanalysis 2014, 6, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhuo, Y.; Chai, Y.Q.; Xiang, Y.; Yuan, R. New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection. Anal. Chem 2015, 87, 1669–1675. [Google Scholar] [CrossRef]
- Shim, W.-B.; Kim, M.J.; Mun, H.; Kim, M.-G. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens. Bioelectron. 2014, 62, 288–294. [Google Scholar] [CrossRef]
- Chen, X.; Che, C.; Korolchuk, V.I.; Gan, F.; Pan, C.; Huang, K. Selenomethionine alleviates AFB1-induced damage in primary chicken hepatocytes by inhibiting CYP450 1A5 expression via upregulated SelW expression. J. Agric. Food Chem. 2017, 65, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Efective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, J.; An, K.; Ren, C.; Lu, X.; Hao, N.; Liu, Q.; Li, H.; Huang, X.; Wang, K. Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosens. Bioelectron. 2018, 108, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Seenivasan, R.; Wang, Y.Z.; Yu, J.H.; Gunasekaran, S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim. Acta 2016, 213, 89–97. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Commission regulation (EU) no 786/2013 of 16 August 2013 amending annex III to regulation (EC) no 853/2004 of European Parliament and of the Council as regards the permitted limits of yessotoxins in live bivalve molluscs (text with EEA relevance). Off. J. Eur. 2013, 220, 14. [Google Scholar]
- Zhou, J.; Qiu, X.; Su, K.; Xu, G.; Wang, P. Disposable poly(o-aminophenol)-carbon nanotubes modified screen print electrode-based enzyme sensor for electrochemical detection of marine toxin okadaic acid. Sens. Actuators B Chem. 2016, 235, 170–178. [Google Scholar] [CrossRef]
- Dorner, B.G.; Zeleny, R.; Harju, K.; Hennekinne, J.A.; Vanninen, P.; Schimmel, H.; Rummel, A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. Trends Anal. Chem. 2016, 85, 89–102. [Google Scholar] [CrossRef]
- Pohanka, M. Current trends in the biosensors for biological warfare agents assay. Materials 2019, 12, 2303. [Google Scholar] [CrossRef]
- Afkhami, A.; Hashemi, P.; Bagheri, H.; Salimian, J.; Ahmadi, A.; Madrakian, T. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype: A using Au nanoparticles/graphene chitosan composite. Biosens. Bioelectron. 2017, 93, 124–131. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Tian, W.; Chi, Y.; Chen, G. ‘‘Turn-on” fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Adv. 2014, 4, 3685–3689. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine. Microchim. Acta 2017, 184, 3997–4006. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. Biosens. Bioelectron. 2019, 87, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hou, A.G.; Chen, L.Y.; Wang, Z.F. Electrochemical sensor prepared from molecularly imprinted polymer for recognition of TNT. Polym. Compos. 2015, 36, 1280–1285. [Google Scholar] [CrossRef]
- Shamsipur, M.; Tabrizi, M.A.; Mahkam, M.; Aboudi, J. A High Sensitive TNT Sensor Based on Electrochemically Reduced Graphene Oxide-Poly(amidoamine) Modified Electrode. Electroanalysis 2015, 27, 1466–1472. [Google Scholar] [CrossRef]
- Yoon, T.; Jun, J.; Kim, D.Y.; Pourasad, S.; Shin, T.J.; Yu, S.U.; Na, W.; Jang, J.; Kim, K.S. An ultra-sensitive, flexible and transparent gas detection film based on well-ordered flat polypyrrole on single-layered graphene. J. Mater. Chem. A 2018, 6, 2257–2263. [Google Scholar] [CrossRef]
- Tang, X.; Lahem, D.; Raskin, J.; Gérard, P.; Geng, X.; André, N.; Debliquy, M. A Fast and Room-Temperature Operation Ammonia Sensor Based on Compound of Graphene with Polypyrrole. IEEE Sens. J 2018, 18, 9088–9096. [Google Scholar] [CrossRef]
- Sun, J.; Shu, X.; Tian, Y.; Tong, Z.; Bai, S.; Luo, R.; Li, D.; Liu, C.C. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B 2017, 241, 658–664. [Google Scholar] [CrossRef]
- Tiwari, D.C.; Atri, P.; Sharma, R. Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites. Synth. Met. 2015, 203, 228–234. [Google Scholar] [CrossRef]
- Tang, X.; Raskin, J.-P.; Kryvutsa, N.; Hermans, S.; Slobodian, O.; Nazarov, A.N.; Debliquy, M. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization. Sens. Actuators B 2020, 305, 127423. [Google Scholar] [CrossRef]
Nanocomposite | Analyte | LOD | Linear Range | Ref. |
---|---|---|---|---|
Poly C-DNA/Tween 20/GO | COC | 2.45 pM | - | [57] |
Nafion/SWCNT | MO | 0.02 µM | 0.05–1 µM 1–10 µM | [59] |
Nafion/SWCNT | CO | 0.05 µM | 0.1–50 µM | [59] |
Nafion/SWCNT | OX | 85 nM | 0.5–10 µM | [60] |
MIP/GO/CDs NPs | OX | 0.8 ng/mL | 1–2000 ng/mL | [61] |
PGE/CuONPs/PPy | TRA | 1.0 nM | 5 nM–380 µM | [65] |
MIP/G/AgNPs | TRA | 2.0 nM | 3.5 nM–10 mM | [66] |
EμPADs/GO | KET | 0.001 nM | 0.001–5 nM | [67] |
Zr-MOF/MIP/G | KET | 0.04 nM | 0.1 nM–0.4 M | [68] |
PET/G | MET | 0.3 g/mL | - | [69] |
Fe3O4@PPy/ErGO/GCE | MET | 0.01 µM | 0.0005–0.2 mM | [70] |
MIP/Pd-G | COC | 0.05 M | 0.1–0.5 M | [71] |
PLA/G | COC | 6 µM | 20–1005 µM | [72] |
rGO/PANI/AuNPs | COC | 0.03 nM | 0.09–85 nM | [74] |
G/PANI | XYL | 0.06 µg/mL | 0.18–5 µg/mL | [78] |
C60/PAMAM/AuNPs | EPO | – | 0.01–80 mIU/mL | [80] |
SPCE/AuNPs/G/PDMS | AFB1 | 15 pg/mL | 20 pg/mL–50 ng/mL | [84] |
PPy/AuNPs/ErGO | FB1 DON | 4.2 ppb 8.6 ppb | 0.2–4.5 ppb 0.05–1 ppm | [85] |
PoAP/CNT/SPCE | OA | 0.55 g/L | 1–300 g/L | [87] |
AuNPs/g-Chitosan | BoNT | 0.11 pg/mL | 0.27–270 pg/mL | [90] |
PEI-GQDs | CN- | 0.66 μM | 2–200 μM | [91] |
AuNPs@C60/MIP/GCE | TNT | 3.5 amol/L | 0.01 fmol/L–1.5 µmol/L | [92] |
ErGO-PAMAM | TNT | 0.002 ppm | 0.05 to 1.3 ppm | [95] |
PPy/G | NO2NH3 | 0.03 ppb 0.04 ppb | - | [96] |
PPy/G | NH3 | 5 ppm | - | [97] |
PPy/rGO | NH3 | - | 1–10 ppm | [98] |
PPy/rGO | NH3 | - | 5–300 ppm | [99] |
PPy/rGO | NH3 | - | 1–4 ppm | [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Pascual, A.M.; Cruz, D.L.; Redondo, A.L. Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis. Polymers 2022, 14, 3598. https://doi.org/10.3390/polym14173598
Díez-Pascual AM, Cruz DL, Redondo AL. Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis. Polymers. 2022; 14(17):3598. https://doi.org/10.3390/polym14173598
Chicago/Turabian StyleDíez-Pascual, Ana M., Daniel Lechuga Cruz, and Alba Lomas Redondo. 2022. "Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis" Polymers 14, no. 17: 3598. https://doi.org/10.3390/polym14173598
APA StyleDíez-Pascual, A. M., Cruz, D. L., & Redondo, A. L. (2022). Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis. Polymers, 14(17), 3598. https://doi.org/10.3390/polym14173598