Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. SEM
5. Conclusions
- Twenty-eight days’ compressive strength showed an increase with the increase in the CF content for each CF size. However, on average, the compressive strength showed a drop with the CF size.
- The flexural strength showed gradual improvement with the increase in the CF content for a given size. It could be observed that, in order to increase the flexural strength of these composites significantly, the CF content needs to be higher than 0.5%.
- The electrical conductivity increased with the size and the content of the CFs. However, when the CF of a given size increased, the rate of increasing the conductivity gradually dropped, indicating that the electrical conductivity would reach a saturation level.
- Increasing the CF content showed a gradual increase in the EMI shielding. However, the rate of increase in EMI shielding was reduced with increasing CF content, indicating saturation of EMI-shielding properties. Increasing the CF size also showed a beneficial effect on the shielding properties, with 0.7% of 12 mm CFs showing the best shielding properties, which is 43.43 dB over the tested frequency range.
- SEM analyses of the composites showed that the CFs have been distributed evenly throughout the matrix in random orientations mixed with other constituents.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Dunuweera, S.P.; Rajapakse, R.M.G. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Adv. Mater. Sci. Eng. 2018, 2018, 4158682. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodríguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Long, W.-J.; Zheng, D.; Duan, H.-B.; Han, N.; Xing, F. Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates. J. Clean. Prod. 2018, 194, 193–202. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Singh, M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020, 254, 120147. [Google Scholar] [CrossRef]
- Zain, H.; Abdullah, M.M.A.B.; Ariffin, N.; Bayuaji, R.; Hussin, K. Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment. MATEC Web Conf. 2017, 97, 1021. [Google Scholar] [CrossRef]
- Habert, G.; Ouellet-Plamondon, C. Recent update on the environmental impact of geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. [Google Scholar] [CrossRef]
- Habert, G.; de Lacaillerie, J.B.d.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Elyamany, H.E.; Elmoaty, A.E.M.A.; Elshaboury, A.M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 2018, 187, 974–983. [Google Scholar] [CrossRef]
- Antoni; Wijaya, S.W.; Hardjito, D. Factors Affecting the Setting Time of Fly Ash-Based Geopolymer. Mater. Sci. Forum 2016, 841, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Elimbi, A.; Tchakoute, H.; Njopwouo, D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 2011, 25, 2805–2812. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Kaze, R.C.; Naghizadeh, A.; Tchadjie, L.; Adesina, A.; Djobo, J.N.Y.; Nemaleu, J.G.D.; Kamseu, E.; Melo, U.C.; Tayeh, B.A. Lateritic soils based geopolymer materials: A review. Constr. Build. Mater. 2022, 344, 128157. [Google Scholar] [CrossRef]
- Abdulkareem, O.A.; al Bakri, A.M.M.; Kamarudin, H.; Nizar, I.K.; Saif, A.A. Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 2014, 50, 377–387. [Google Scholar] [CrossRef]
- Lavanya, A.B. Effects of electromagnetic radiation on biological systems: A short review of case studies. In Proceedings of the 8th International Conference on Electromagnetic Interference and Compatibility, Chennai, India, 18–19 December 2003; pp. 87–90. [Google Scholar]
- Zamanian, A.; Hardiman, C. Electromagnetic Radiation and Human Health: A Review of Sources and Effects. High Freq. Electron. 2005, 4, 16–26. [Google Scholar]
- Sager, D.P. Current facts on pacemaker electromagnetic interference and their application to clinical care. Heart Lung 1987, 16, 211–221. [Google Scholar]
- Binggeli, C.; Rickli, H.; Ammann, P.; Brunckhorst, C.; Hufschmid, U.; Luechinger, R.; Duru, F. Induction Ovens and Electromagnetic Interference: What Is the Risk for Patients with Implantable Cardioverter Defibrillators? J. Cardiovasc. Electrophysiol. 2005, 16, 399–401. [Google Scholar] [CrossRef]
- Crerar, P.; Henley, J.; Wintour, P. Russia accused of cyber-attack on chemical weapons watchdog. The Guardian, 2019. Available online: https://www.theguardian.com/world/2018/oct/04/netherlands-halted-russian-cyber-attack-on-chemical-weapons-body (accessed on 29 September 2019).
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. Part B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y.; Cheng, J. Cement based electromagnetic shielding and absorbing building materials. Cem. Concr. Compos. 2006, 28, 468–474. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, H.; Wu, J.; Chen, J. Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles. Constr. Build. Mater. 2017, 151, 575–581. [Google Scholar] [CrossRef]
- Zukowski, B.; Mendonça, Y.G.d.S.; de Souza, J.V.B.; Filho, R.D.T. Cement-based EMI shielding materials. In Materials for Potential EMI Shielding Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–340. [Google Scholar]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Pasha, S.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Tong, X.C. Advanced Materials and Design for Electromagnetic Interference Shielding, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Dhawan, S.K.; Ohlan, A.; Singh, K. Designing of Nano Composites of Conducting Polymers for EMI Shielding. In Advances in Nanocomposite—Synthesis, Characterisation and Industrial Applications; InTech: Houston, TX, USA, 2011. [Google Scholar]
- Geetha, S.; Kumar, K.K.S.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C.K. EMI shielding: Methods and materials-A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- MIL-STD-188-125-1; High-Altitude Electromagnetic (HEMP) Protection for Ground Based C41 Facilities. US Military Specs/Standards/Handbooks. Department of Defense: Richmond, VA, USA, 2005; p. 106.
- Kondawar, S.B.; Modak, P.R. Theory of EMI shielding. In Materials for Potential EMI Shielding Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 9–25. [Google Scholar]
- ASTM D4935-18; Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International: West Conshohocken, PA, USA, 2018; p. 11.
- Viheriäkoski, T.; Wong, R.; Fung, R.; Tamminen, P. Characterisation of ESD shielding materials with novel test methods. J. Phys. Conf. Ser. 2019, 1322, 012023. [Google Scholar] [CrossRef]
- Liew, Y.-M.; Heah, C.-Y.; Mohd Mustafa, A.B.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Panias, D. Structure, Design and Applications of Geopolymeric Materials. In Proceedings of the 3rd International Conference on Deformation Processing and Structure of Materials, Belgrade, Serbia, 20–22 September 2007; p. 8. [Google Scholar]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Cui, X.-M.; Zheng, G.-J.; Han, Y.-C.; Su, F.; Zhou, J. A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials. J. Power Source 2008, 184, 652–656. [Google Scholar] [CrossRef]
- Chand, S. Carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Morita, K.I. Carbon Fibers; CRC Press: Boca Raton, FL, USA, 1984; Volume 40. [Google Scholar]
- Aldosari, S.M.; Khan, M.; Rahatekar, S. Manufacturing carbon fibres from pitch and polyethylene blend precursors: A review. J. Mater. Res. Technol. 2020, 9, 7786–7806. [Google Scholar] [CrossRef]
- Dumanlı, A.G.; Windle, A.H. Carbon fibres from cellulosic precursors: A review. J. Mater. Sci. 2012, 47, 4236–4250. [Google Scholar] [CrossRef]
- Qiu, J.; Li, J.; Yuan, Z.; Zeng, H.; Chen, X. Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites. Appl. Compos. Mater. 2018, 25, 853–860. [Google Scholar] [CrossRef]
- Dai, Z.; Shi, F.; Zhang, B.; Li, M.; Zhang, Z. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 2011, 257, 6980–6985. [Google Scholar] [CrossRef]
- Payakaniti, P.; Pinitsoontorn, S.; Thongbai, P.; Amornkitbamrung, V.; Chindaprasirt, P. Electrical conductivity and compressive strength of carbon fiber reinforced fly ash geopolymeric composites. Constr. Build. Mater. 2017, 135, 164–176. [Google Scholar] [CrossRef]
- Vaidya, S.; Allouche, E.N. Strain sensing of carbon fiber reinforced geopolymer concrete. Mater. Struct. 2011, 44, 1467–1475. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Masoumi, S.; Kim, T.; McCaslin, E.; Alnahhal, M.F.; Almer, J.D.; White, C.E. Chemo-mechanical properties of carbon fiber reinforced geopolymer interphase. J. Am. Ceram. Soc. 2021, 105, 1519–1532. [Google Scholar] [CrossRef]
- Lin, T.; Jia, D.; He, P.; Wang, M.; Liang, D. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A 2008, 497, 181–185. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Kodur, V.; Cao, L.; Qi, S.-L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014, 71, 153–158. [Google Scholar] [CrossRef]
- Yan, S.; He, P.; Jia, D.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 2016, 42, 7837–7843. [Google Scholar] [CrossRef]
- Aslani, F.; Deghani, A.; Asif, Z. Development of Lightweight Rubberized Geopolymer Concrete by Using Polystyrene and Recycled Crumb-Rubber Aggregates. J. Mater. Civ. Eng. 2020, 32, 04019345. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings of the World Congress Geopolymer 2005; Geopolymer Institute: Paris, France, 2005. [Google Scholar]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. On the development of fly ash-based geopolymer concrete. Mater. J. 2004, 101, 467–472. [Google Scholar]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Puligilla, S.; Mondal, P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 2013, 43, 70–80. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Constr. Build. Mater. 2020, 260, 120439. [Google Scholar] [CrossRef]
- Luna-Galiano, Y.; Leiva, C.; Villegas, R.; Arroyo, F.; Vilches, L.; Fernández-Pereira, E.C. Carbon fiber waste incorporation in blast furnace slag geopolymer-composites. Mater. Lett. 2018, 233, 1–3. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2019, 107, 103498. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Sarker, P.K.; Long, T.; Shi, X.; Wang, Q.; Cai, G. Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method. Int. J. Concr. Struct. Mater. 2019, 13, 63. [Google Scholar] [CrossRef]
- Vora, P.R.; Dave, U.V. Parametric Studies on Compressive Strength of Geopolymer Concrete. Procedia Eng. 2013, 51, 210–219. [Google Scholar] [CrossRef]
- Payakaniti, P.; Pinitsoonthorn, S.; Thongbai, P.; Amornkitbamrung, V.; Chindaprasirt, P. Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite. Mater. Today Proc. 2018, 5, 14017–14025. [Google Scholar] [CrossRef]
Chemical Properties | Physical Properties | ||
---|---|---|---|
CaO | 3.30% | Relative density | 2.29 |
SiO2 | 50.40% | Moisture | <0.1% |
Al2O3 | 31.50% | Relative water requirement | 93% |
Fe2O3 | 10.40% | Sulphuric anhydride | 0.10% |
SO3 | 0.10% | Chloride ion | 0.00% |
MgO | 1.10% | Chemical composition | 92.30% |
Na2O | 0.30% | Loss on ignition | 1.10% |
K2O | 0.50% | Strength index | 102% |
SrO | <0.1% | ||
TiO2 | 1.90% | ||
P2O5 | 0.50% | ||
Mn2O3 | 0.20% | ||
Total alkali | 0.60% |
Chemical Properties | Physical Properties | ||
---|---|---|---|
FeO | 1.30% | Bulk density | 850 kg/m3 |
CaO | 38–43% | Glass content | >85% |
SiO2 | 32–37% | Angle of repose | Approx. 35° |
Al2O3 | 13–16% | Chloride ion | <0.025% |
MgO | 5–8% | ||
TiO2 | 1.50% | ||
MnO | 0.50% | ||
Hydraulic index | 1.7–1.9% |
Mix | Label | Fly Ash | GGBFS | Water | 45/50 Sand | NaOH | Sodium Silicate |
---|---|---|---|---|---|---|---|
Control | GC | 0.56 | 0.44 | 0.17 | 0.81 | 0.11 | 0.29 |
Type and Length of CFs | Tensile Strength (MPa) | Tensile Modulus (GPa) | Electrical Resistivity (Ω∙cm) | Density (g/cm3) | Fibre Diameter (µm) | Carbon Content (%) |
---|---|---|---|---|---|---|
Unsized 3 mm | 4137 | 242 | 1.55 × 10−3 | 1.8 | 7 | 95 |
Unsized 6 mm | 4137 | 242 | 1.55 × 10−3 | 1.8 | 7 | 95 |
Unsized 12 mm | 4137 | 242 | 1.55 × 10−3 | 1.8 | 7 | 95 |
Mix Label | CF Length | CF Content | Total Alkaline Solution |
---|---|---|---|
G3ZOL0.1 | 3 mm | 0.1% | 0.4 |
G3ZOL0.3 | 0.3% | 0.4 | |
G3ZOL0.5 | 0.5% | 0.4 | |
G3ZOL0.7 | 0.7% | 0.4 | |
G6ZOL0.1 | 6 mm | 0.1% | 0.4 |
G6ZOL0.3 | 0.3% | 0.4 | |
G6ZOL0.5 | 0.5% | 0.4 | |
G6ZOL0.7 | 0.7% | 0.4 | |
G12ZOL0.1 | 12 mm | 0.1% | 0.4 |
G12ZOL0.3 | 0.3% | 0.4 | |
G12ZOL0.5 | 0.5% | 0.4 | |
G12ZOL0.7 | 0.7% | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanasinghe, D.; Aslani, F.; Ma, G. Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites. Polymers 2022, 14, 3750. https://doi.org/10.3390/polym14183750
Wanasinghe D, Aslani F, Ma G. Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites. Polymers. 2022; 14(18):3750. https://doi.org/10.3390/polym14183750
Chicago/Turabian StyleWanasinghe, Dimuthu, Farhad Aslani, and Guowei Ma. 2022. "Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites" Polymers 14, no. 18: 3750. https://doi.org/10.3390/polym14183750
APA StyleWanasinghe, D., Aslani, F., & Ma, G. (2022). Effect of Carbon Fibres on Electromagnetic-Interference-Shielding Properties of Geopolymer Composites. Polymers, 14(18), 3750. https://doi.org/10.3390/polym14183750