Preparation and Application of In-Situ Loaded Silver Nanoparticles Antibacterial Fresh-Keeping Composite Paper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Silver Nanoparticle Paper
2.3. Preparation of AgNPs/1-MCP Antibacterial Fresh-Keeping Composite Paper
2.4. Characterization and Analysis of Antibacterial Fresh-Keeping Paper
2.5. Testing of Tensile Index of Composite Paper
2.6. Antibacterial Effect of Antibacterial Fresh-Keeping Paper
2.7. Preservation Experiment of Cherries
2.7.1. Weight Loss Ratio of Cherries
2.7.2. C2H4 (Ethylene) Concentration
2.7.3. Fruit Firmness of Cherries
2.7.4. Fruit Firmness of Cherries
2.7.5. Bad-Fruit Ratio and Sensory Evaluation of Cherries
3. Results and Discussion
3.1. Characterization of Silver Nanoparticle Paper
3.2. Tensile Index of Composite Paper
3.3. UV Absorption Spectroscopic Analysis of Silver Nanoparticle Paper
3.4. X-ray Diffraction Analysis of Silver Nanoparticle Paper
3.5. Antibacterial Effect of AgNPs/1-MCP Antibacterial Fresh-Keeping Composite Paper
3.6. Preservation Experiment of Cherries
3.6.1. Weight Loss Ratio of Cherries
3.6.2. C2H4 (Ethylene) Concentration
3.6.3. Fruit Firmness of Cherries
3.6.4. Total Soluble Solid Content of Cherries
3.6.5. Bad-Fruit Ratio and Sensory Evaluation of Cherries
3.7. Summary of Cherry Preservation Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008, 43, 84–92. [Google Scholar] [CrossRef]
- Ifuku, S.; Tsuji, M.; Morimoto, M.; Saimoto, H.; Yano, H. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 2009, 10, 2714–2717. [Google Scholar] [CrossRef] [PubMed]
- Tomi, B.; Simoni, B.; Orel, B.; Erjav, M.; Schroers, H.; Simoni, A.; Samard Ija, Z. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr. Polym. 2009, 75, 618–626. [Google Scholar]
- Morris, C.E.; Welch, C.M. Antimicrobial Finishing of Cotton with Zinc Pyrithione. Text. Res. J. 1983, 53, 725–728. [Google Scholar] [CrossRef]
- Diez, I.; Eronen, P.; Osterberg, M.; Linder, M.B.; Ikkala, O.; Ras, R.H. Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol. Biosci. 2011, 11, 1185–1191. [Google Scholar] [CrossRef]
- Amini, E.; Azadfallah, M.; Layeghi, M.; Talaei-Hassanloui, R. Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Celllulose 2016, 23, 557–570. [Google Scholar] [CrossRef]
- Jamnongkan, T.; Shirota, R.; Sukumaran, S.K.; Sugimoto, M.; Koyama, K. Effect of ZnO Nanoparticles on the Electrospinning of Poly(vinyl alcohol) From Aqueous Solution: Influence of Particle Size. Polym. Eng. Sci. 2014, 54, 1969–1975. [Google Scholar] [CrossRef]
- Akrami, F.; Rodriguez-Lafuente, A.; Bentayeb, K.; Pezo, D.; Ghalebi, S.R.; Nerin, C. Antioxidant and antimicrobial active paper based on Zataria (Zataria multiflora) and two cumin cultivars (Cuminum cyminum). LWT Food Sci. Technol. 2015, 60, 929–933. [Google Scholar] [CrossRef]
- Lv, C.; Hao, L.; Cui, X.; Yi, F.; Su, C. Study on the Composition and Physiological Activity of the Essential Oils and Extracts of Cinnamomum camphora Fruit. Chem. Biodivers. 2021, 18, e2100201. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Valle, M.G.V.-d.; Hernández-López, M.; Barka, E.A.; Bosquez-Molina, E.; Wilson, C.L.J.C.P. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Ho Lee, C.; Soon An, D.; Cheol Lee, S.; Jin Park, H.; Sun Lee, D. A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol. J. Food Eng. 2004, 62, 323–329. [Google Scholar] [CrossRef]
- Zheng, Z.; Yin, W.; Zara, J.N.; Li, W.; Kwak, J.; Mamidi, R.; Lee, M.; Siu, R.K.; Ngo, R.; Wang, J.; et al. The use of BMP-2 coupled—Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 2010, 31, 9293–9300. [Google Scholar] [CrossRef]
- Sharma, N.; Phutela, K.; Goel, A.; Soni, S.; Batra, N. Exploring the bacterial based silver nanoparticle for their possible application as disinfectants. Biointerface Res. Appl. Chem. 2018, 8, 3100–3104. [Google Scholar]
- Pulit-Prociak, J.; Banach, M. Silver nanoparticles—A material of the future...? Open Chem. 2016, 14, 76–91. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Ostler, E. Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J. Biol. Eng. 2009, 3, 20. [Google Scholar] [CrossRef]
- Park, S.Y.; Ryu, S.Y.; Kwak, S.Y. Antibacterial Metal-Fiber Hybrid with Covalent Assembly of Silver and Palladium Nanoparticles on Cellulose Fibers; IACSIT Press: Singapore, 2011; pp. 183–186. [Google Scholar]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Rooney, M.L. Active Packaging: Science and Application; CRC Press: Boca Raton, FL, USA, 2002; pp. 533–541. [Google Scholar]
- Hamilton, A.J.; Bouzayen, M.; Grierson, D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 1991, 88, 7434–7437. [Google Scholar] [CrossRef]
- Sato, T.; Theologis, A. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA 1989, 86, 6621–6625. [Google Scholar] [CrossRef]
- Hu, Z.J.; Tang, C.X.; He, Z.B.; Lin, J.; Ni, Y.H. 1-Methylcyclopropene (MCP)-Containing Cellulose Paper Packaging for Fresh Fruit and Vegetable Preservation: A Review. BioResources 2017, 12, 2234–2248. [Google Scholar] [CrossRef]
- Singh, S.P.; Pal, R.K. Response of climacteric-type guava (Psidium guajava L.) to postharvest treatment with 1-MCP. Postharvest Biol. Technol. 2008, 47, 307–314. [Google Scholar] [CrossRef]
- Bassetto, E.; Jacomino, A.P.; Pinheiro, A.L.; Kluge, R.A. Delay of ripening of ‘Pedro Sato’ guava with 1-methylcyclopropene. Postharvest Biol. Technol. 2005, 35, 303–308. [Google Scholar] [CrossRef]
- Valero, D.; Martı́nez-Romero, D.; Valverde, J.M.; Guillén, F.; Castillo, S.; Serrano, M. Could the 1-MCP treatment effectiveness in plum be affected by packaging? Postharvest Biol. Technol. 2004, 34, 295–303. [Google Scholar] [CrossRef]
- Khan, A.S.; Singh, Z. 1-MCP regulates ethylene biosynthesis and fruit softening during ripening of ‘Tegan Blue’ plum. Postharvest Biol. Technol. 2007, 43, 298–306. [Google Scholar] [CrossRef]
- Argenta, L.C.; Fan, X.; Mattheis, J.P. Influence of 1-methylcyclopropene on ripening, storage life, and volatile production by d’Anjou cv. pear fruit. J. Agric. Food Chem. 2003, 51, 3858–3864. [Google Scholar] [CrossRef]
- Zhi, H.; Dong, Y. Effect of 1-Methylcyclopropene on Superficial Scald Associated with Ethylene Production, α-Farnesene Catabolism, and Antioxidant System of Over-Mature ‘d’Anjou’ Pears After Long-Term Storage. Food Bioprocess Technol. 2018, 11, 1775–1786. [Google Scholar] [CrossRef]
- Cameron, A.C.; Reid, M.S. 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient. Postharvest Biol. Technol. 2001, 22, 169–177. [Google Scholar] [CrossRef]
- Mavani, K.; Shah, M. Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent. Esrsa Publ. 2013, 2, 1–5. [Google Scholar]
- Amini, E.; Azadfallah, M. In situ synthesis of silver nanoparticles on fiber matrix for preparing antibacterial paper. Biointerface Res. Appl. Chem. 2018, 8, 3449–3456. [Google Scholar]
- Sun, R.W.; Chen, R.; Chung, N.P.; Ho, C.M.; Lin, C.L.; Che, C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. 2005, 2005, 5059–5061. [Google Scholar] [CrossRef] [PubMed]
- Kaegi, R.; Voegelin, A.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 2011, 45, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008, 72, 43–51. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.B.; Kwak, J.H.; Zhang, Z.C.; Brown, H.M.; Arey, B.W.; Holladay, J.E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr. Polym. 2007, 68, 235–241. [Google Scholar] [CrossRef]
- Dinand, E.; Vignon, M.; Chanzy, H.; Heux, L. Mercerization of primary wall cellulose and its implication for the conversion of Cellulose I → Cellulose II. Cellulose 2002, 9, 7–18. [Google Scholar] [CrossRef]
- Nascimento, D.M.D.; Dias, A.F.; Araújo Junior, C.P.D.; Rosa, M.D.F.; Morais, J.P.S.; Figueirêdo, M.C.B.D. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: Environmental assessment of technological pathways. Ind. Crops Prod. 2016, 93, 58–65. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122. [Google Scholar] [CrossRef]
- Liang, S.; Yu-Xia, Y.; Ling-Yan, L.; Wen, C.; Chao, K.; Zhen-Hua, D.; Mu-Bo, S. Effects of sodium alginate film on quality of postharvest storage in Passion fruit. Sci. Technol. Food Ind. 2016, 37, 332–334+339. [Google Scholar]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Du, X.L.; Li, H.; Zhou, W.H.; Liu, Y.; Li, J.L. Determination of Quality Changes in Peaches Wrapped in Active Paper and Stored at Ambient Temperature in Summer. Sci. Rep. 2017, 7, 11830. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2008, 48, 52–62. [Google Scholar] [CrossRef]
- Zhang, J.; Bruton, B.D.; Biles, C.L. Cell wall-degrading enzymes of Didymella bryoniae in relation to fungal growth and virulence in cantaloupe fruit. Eur. J. Plant Pathol. 2014, 139, 749–761. [Google Scholar] [CrossRef]
- Jordan, R.B.; Walton, E.F.; Klages, K.U.; Seelye, R.J. Postharvest fruit density as an indicator of dry matter and ripened soluble solids of kiwifruit. Postharvest Biol. Technol. 2000, 20, 163–173. [Google Scholar] [CrossRef]
- Fan, X.G.; Shu, C.; Zhao, K.; Wang, X.M.; Cao, J.K.; Jiang, W.B. Regulation of apricot ripening and softening process during shelf life by post-storage treatments of exogenous ethylene and 1-methylcyclopropene. Sci. Hortic. 2018, 232, 63–70. [Google Scholar] [CrossRef]
- Sakhale, B.K.; Gaikwad, S.S.; Chavan, R.F. Application of 1-methylcyclopropene on mango fruit (Cv. Kesar): Potential for shelf life enhancement and retention of quality. J. Food Sci. Technol. Mysore 2018, 55, 776–781. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. Innov. Food Sci. Emerg. Technol. 2018, 49, 20–30. [Google Scholar] [CrossRef]
- Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011, 63, 427–440. [Google Scholar] [CrossRef]
Fullness of Fruit | Color | Fragrance | |||
---|---|---|---|---|---|
Senses | Score | Senses | Score | Senses | Score |
Full flesh | 4 | Bright red | 2.5–3.0 | Strong fragrance | 2.5–3.0 |
Slightly soft | 3 | Red to dark red | 2.0–2.5 | Normal fragrance | 2.0–2.5 |
Soft | 2 | Dark red | 1.5–2.0 | Fragrance fades | 1.5–2.0 |
Shrivel | 1 | Black | 0–1.5 | No fragrance | 0–1.5 |
Sample Name | CK | Shellac | 0.001 | 0.005 | 0.01 | 0.05 | 0.1 | 0.5 | |
---|---|---|---|---|---|---|---|---|---|
Storage Time/Day | |||||||||
0 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
3 | 6.5 | 7 | 8.5 | 9 | 10 | 10 | 10 | 10 | |
6 | 4 | 4 | 6 | 7.5 | 9 | 9 | 9 | 9 | |
9 | 2 | 3 | 3 | 5 | 6.5 | 8.5 | 8 | 8.5 | |
12 | 1 | 1 | 3 | 4 | 4 | 7.5 | 7 | 7 | |
15 | 1 | 1 | 2 | 3 | 3 | 5.5 | 5.5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Li, X.; Zhao, C. Preparation and Application of In-Situ Loaded Silver Nanoparticles Antibacterial Fresh-Keeping Composite Paper. Polymers 2022, 14, 3798. https://doi.org/10.3390/polym14183798
Lin G, Li X, Zhao C. Preparation and Application of In-Situ Loaded Silver Nanoparticles Antibacterial Fresh-Keeping Composite Paper. Polymers. 2022; 14(18):3798. https://doi.org/10.3390/polym14183798
Chicago/Turabian StyleLin, Guangzhi, Xia Li, and Chuanshan Zhao. 2022. "Preparation and Application of In-Situ Loaded Silver Nanoparticles Antibacterial Fresh-Keeping Composite Paper" Polymers 14, no. 18: 3798. https://doi.org/10.3390/polym14183798
APA StyleLin, G., Li, X., & Zhao, C. (2022). Preparation and Application of In-Situ Loaded Silver Nanoparticles Antibacterial Fresh-Keeping Composite Paper. Polymers, 14(18), 3798. https://doi.org/10.3390/polym14183798