Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymer Blend Synthesis without Salt
2.2. Polymer Blend Synthesis with Salt
2.3. Measurements
2.3.1. Polarized Optical Microscopy (POM)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Electrochemical Impedance Spectroscopy (EIS)
Conductivity Measurements
Dielectric Constant
Carrier Concentration and Mobility
2.3.4. Linear Speed Voltammetry (LSV)
2.3.5. Transference Number Measurements (TNM)
2.4. Synthesis of Electrode Material
2.5. Fabrication and Characterization of a Solid-State Supercapacitor
2.5.1. Supercapacitor Fabrication
Electrode Fabrication
Supercapacitor Device Assembly
2.5.2. Characterization of the Supercapacitor Device
Cyclic Voltammetry
Galvanostatic Charge-Discharge (GCV)
Low Frequency–Impedance Spectroscopy (IS)
3. Results
3.1. Surface Morphology Investigations of Polymer Blend Electrolyte films (POM Analysis)
3.2. FTIR Analysis
3.3. AC Impedance Analysis
3.3.1. Conductivity
3.3.2. Dielectric Constant
3.3.3. Charge Carriers’ Concentration and Mobility
3.4. Linear Speed Voltammetry (LSV)
3.5. Transference Number Measurements
3.6. Cyclic Voltammetry
3.7. Galvanostatic Charge-Discharge (GCV)
3.8. Low Frequency–Impedance Spectroscopy (IS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bargav, P.B.; Mohan, V.; Sharma, M.A.K.; Rao, V.V.R.N. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid-state battery applications. Ionics 2007, 13, 441–446. [Google Scholar] [CrossRef]
- Prajapayti, G.K.; Roshan, R.; Gupta, P.N. Effect of plasticizer on ionic transport and dielectric properties of PVA–H3PO4 proton-conducting polymeric electrolytes. J. Phys. Chem. Solids 2010, 71, 1717–1723. [Google Scholar] [CrossRef]
- Awadhia, A.; Agarwal, S.L. Structural, thermal and electrical characterization of PVA: DMSO: NH4SCN gel electrolytes. Solid State Ion. 2007, 178, 951–958. [Google Scholar] [CrossRef]
- Reddy, C.V.S.; Sharma, A.K.; Rao, V.V.R.N. Effect of plasticizer on electrical conductivity and cell parameters of PVP+PVA+KClO3 blend polymer electrolyte system. J. Power Sources 2002, 111, 357–360. [Google Scholar] [CrossRef]
- Premalatha, M.; Vijaya, N.; Selvasekarapandian, S.; Selvalakshmi, S. Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 2016, 22, 1299–1310. [Google Scholar] [CrossRef]
- Cherng, J.Y.; Munshi, M.Z.A.; Owens, B.B.; Smyrl, W.H. Applications of multivalent ionic conductors to polymeric electrolyte batteries. Solid State Ion. 1988, 28, 857–861. [Google Scholar] [CrossRef]
- Yahya, M.Z.A.; Arof, A.K. Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur. Polym. J. 2003, 39, 897–902. [Google Scholar] [CrossRef]
- Weston, J.E.; Steele, B.C.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ion. 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 2004, 58, 641–649. [Google Scholar] [CrossRef]
- Muthiah, M.; Chellasamy, G.; Natarajan, R.; Subramanian, S.; Chinnappa, S. Proton conducting polymer electrolytes based on PVdF-PVA with NH4NO3. J. Polym. Eng. 2013, 33, 315–322. [Google Scholar] [CrossRef]
- Subba, R.C.; Sharmanad, A.K.; NarasimhaRao, V.V.R. Characterization of a solid state battery based on polyblend of (PVP + PVA + KBr O3) electrolyte. Ionics 2004, 10, 142–147. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Elashmawi, I.S.; El-Khodary, A.; Yassin, A. Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 2010, 10, 607–613. [Google Scholar] [CrossRef]
- De Queiroz, A.A.; Soares, D.A.; Trzesniak, P.; Abraham, G.A. Resistive-type humidity sensors based on PVP-Co and PVP-I2 complexes. J. Polym. Sci. B Polym. Phys. 2001, 39, 459–469. [Google Scholar] [CrossRef]
- Hatta, F.F.; Yahya, M.Z.A.; Ali, A.M.M.; Subban, R.H.Y.; Harun, K.; Mohamad, A.A. Electrical Conductivity Studies on PVA/PVP-KOH Alkaline Solid Polymer Blend Electrolyte. Ionics 2005, 11, 418–422. [Google Scholar] [CrossRef]
- Bash, S.K.S.; Rao, M.C. Spectroscopic and Electrochemical Properties of (1-x) [PVA/PVP]:[MgCl26H2O] Blend Polymer Electrolyte Films. Int. J. Polym. Sci. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Todd, A.M.; Otaigbe, J.U.; Rhoades, D.; Holland, G.P.; Cherry, B.R.; Kotula, P.G. Nanostructured polymer blends: Synthesis and structure. Polymer 2005, 46, 12468–12479. [Google Scholar]
- Choi, N.-S.; Lee, Y.-G.; Park, J.-K.; Ko, J.-M. Preparation and electrochemical characteristics of plasticized polymer electrolytes based upon a P (VdF-co-HFP)/PVAc blend. Electrochim. Acta 2001, 46, 1581–1586. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, Y.W.; Shin, H.K. Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim. Acta 2000, 45, 1371–1374. [Google Scholar] [CrossRef]
- Sivadevi, S.; Selvasekarapandian, S.; Karthikeyan, S.; Sanjeeviraja, C.; Nithya, H.; Iwai, Y.; Kawamura, J. Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 2014, 21, 1017–1029. [Google Scholar] [CrossRef]
- Arunkumar, R.; Babu, R.S.; Rani, M.U.; Kalainathan, S. Effect of PBMA on PVC-based polymer blend electrolytes. J. Appl. Polym. Sci. 2017, 134, 44939. [Google Scholar] [CrossRef]
- Irfan, M.; Manjunath, A.; Mahesh, S.S.; Somashekar, R.; Demappa, T. Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J. Mater. Sci. Mater. Electron. 2021, 32, 5520–5537. [Google Scholar] [CrossRef]
- Deshmukh, K.; Ahamed, M.B.; Polu, A.R.; Sadasivuni, K.K.; Pasha, S.K.K.; Ponnamma, D.; Mariam, A.A.A.; Rajendra, R.D.; Chidambaram, K. Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J. Mater. Sci. Mater. Electron. 2016, 27, 11410–11424. [Google Scholar] [CrossRef]
- Sadiq, M.; Raza, M.M.H.; Murtaza, T.; Zulfequar, M.; Ali, J. Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films. J. Electron. Mater. 2021, 50, 403–418. [Google Scholar] [CrossRef]
- Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.; Kawamura, J.; Bahadur, S.A. A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. 2014, 71, 1061–1080. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abidin, Z.H.Z. Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. J. Appl. Polym. Sci. 2015, 132, 41774. [Google Scholar] [CrossRef]
- Schutt, H.J.; Gerdes, E. Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. J. Non-Cryst. Solids 1992, 144, 14–20. [Google Scholar] [CrossRef]
- Konwar, S.; Dhapola, P.S.; Gupta, M.; Singh, R.C.; Singh, P.K. High purity graphene oxide using electrochemical synthesis and its application. Macromol. Symp. 2019, 388, 1900038. [Google Scholar] [CrossRef]
- Abdulwahid, R.T.; Aziz, S.B.; Brza, M.A.; Kadir, M.F.Z.; Karim, W.O.; Hamsan, H.M.; Asnawi, A.S.F.M.; Abdullah, R.M.; Nofal, M.M.; Dannoun, E.M.A. Electrochemical performance of polymer blend electrolytes based on chitosan: Dextran: Impedance, dielectric properties, and energy storage study. J. Mater. Sci. Mater. Electron. 2021, 32, 14846–14862. [Google Scholar] [CrossRef]
- Shtilman, M.I. Polymers for medicobiological use. Polym. Sci. Ser. A 2010, 52, 884–899. [Google Scholar] [CrossRef]
- Fan, L.; Dang, Z.; Nan, C.W.; Li, M. Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/ P(VDF-HFP) blends. Electrochim. Acta 2002, 48, 205–209. [Google Scholar] [CrossRef]
- Ramya, C.S.; Selvasekarapandian, S.; Savitha, T.; Hirankumar, G.; Baskaran, R.; Bhuvaneswari, M.S.; Angelo, P.C. Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur. Polym. J. 2006, 42, 2672–2677. [Google Scholar] [CrossRef]
- MacCallum, J.R.; Tomlin, A.S.; Vincent, C.A. An investigation of the conducting species in polymer electrolytes. Eur. Polym. J. 1986, 22, 787–791. [Google Scholar] [CrossRef]
- Sampath, K.L.; Christopher, S.P.S.; Perumal, P.; Chitra, R.; Muthukrishnan, M. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 2019, 25, 1067–1082. [Google Scholar] [CrossRef]
- Asnawi, A.S.F.M.; Aziz, S.B.; Nofal, M.M.; Yusof, Y.M.; Brevik, I.; Hamsan, M.H.; Brza, M.A.; Abdulwahid, R.T.; Kadir, M.F.Z. Metal complex as a novel approach to enhance the amorphous phase and improve the EDLC performance of plasticized proton conducting chitosan-based polymer electrolyte. Membranes 2020, 10, 132. [Google Scholar] [CrossRef]
- Devi, C.; Gellanki, J.; Pettersson, H.; Kumar, S. High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci. Rep. 2021, 11, 20180. [Google Scholar] [CrossRef]
- Rani, M.S.A.; Ahmad, A.; Mohamed, N.S. Influence of nano-sized fumed silica on physicochemical and electrochemical properties of cellulose derivatives-ionic liquid biopolymer electrolytes. Ionics 2017, 24, 807–814. [Google Scholar] [CrossRef]
- Kufian, M.Z.; Aziz, M.F.; Shukur, M.F.; Rahim, A.S.; Ariffin, N.E.; Shuhaimi, N.E.A.; Arof, A.K. PMMA-LiBOB gel electrolyte for application in lithium-ion batteries. Solid State Ion. 2012, 208, 36–42. [Google Scholar] [CrossRef]
- Pandey, G.P.; Kumar, Y.; Hashmi, S.A. Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems. Solid State Ion. 2011, 190, 93–98. [Google Scholar] [CrossRef]
- Xu, G.H.; Zheng, C.; Zhang, Q.; Wei, F. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011, 4, 870–881. [Google Scholar] [CrossRef]
- Fabio, A.D.; Giorgi, A.; Mastragostino, M.; Soavi, F. Carbon-poly (3-methylthiophene) hybrid supercapacitors. J. Electrochem. Soc. 2001, 148, A845–A850. [Google Scholar] [CrossRef]
- Francis, K.A.; Liew, C.-W.; Ramesh, S.; Ramesh, K.; Ramesh, S. Ionic liquid enhanced magnesium-based polymer electrolytes for electrical double-layer capacitors. Ionics 2015, 22, 919–925. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Wang, B.; Sha, J.; Li, Y.; Zheng, D.; Amjadipour, M.; MacLeod, J.; Motta, N. Supercapacitor Electrodes with Remarkable Specific Capacitance Converted from Hybrid Graphene Oxide/NaCl/Urea Films. ACS Appl. Mater. Interface 2017, 9, 22588–22596. [Google Scholar] [CrossRef]
- Rathod, S.G.; Bhajantri, R.F.; Ravindrachary, V.; Pujari, P.K.; Sheela, T. Ionic conductivity and dielectric studies of LiClO4 doped poly (vinylalcohol) (PVA)/chitosan (CS) composites. J. Adv. Dielectr. 2020, 4, 1450033. [Google Scholar] [CrossRef]
- Marf, A.S.; Abdullah, R.M.; Aziz, S.B. Structural, morphological, electrical and electrochemical properties of PVA: CS based proton-conducting polymer blend electrolytes. Membranes 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed]
Samples | Conductivity (S cm−1) |
---|---|
PVA:PVP (50:50 wt%) | 4.72 × 10−9 |
PVA:PVP (50:50 wt%) + 5 wt% NaSCN | 1.6 × 10−7 |
PVA:PVP (50:50 wt%) + 10 wt% NaSCN | 4.2 × 10−7 |
PVA:PVP (50:50 wt%) + 15 wt% NaSCN | 1.91 × 10−6 |
PVA:PVP (50:50 wt%) + 20 wt% NaSCN | 8.1 × 10−5 |
PVA:PVP (50:50 wt%) + 25 wt% NaSCN | 1.46 × 10−5 |
Samples | Dielectric Constant (ε) |
---|---|
PVA:PVP (50:50 wt%) | 7.60 |
PVA:PVP (50:50 wt%) + 5 wt% NaSCN | 32.84 |
PVA:PVP (50:50 wt%) + 10 wt% NaSCN | 19.80 |
PVA:PVP (50:50 wt%) + 15 wt% NaSCN | 77.32 |
PVA:PVP (50:50 wt%) + 20 wt% NaSCN | 81.92 |
PVA:PVP (50:50 wt%) + 25 wt% NaSCN | 107.06 |
Salt Composition (wt%) | Number of Charge Carriers (n) | Mobility (m2/Vs) |
---|---|---|
5 | 1.88 × 108 | 0.53 × 106 |
10 | 1.48 × 1011 | 1.77 × 103 |
15 | 6.34 × 1010 | 1.88 × 104 |
20 | 1.94 × 1017 | 2.61 × 10−1 |
25 | 6.28 × 1013 | 1.4×10−2 |
Parameter | Value |
---|---|
RHFR/kΩ | 1 |
R/MΩ | 1.653 |
R2/MΩ | 0.1172 |
Q1 (μF) | 0.6288 |
Q2 (μF) | 0.06045 |
Csp (F·g−1) | 14.25 |
Samples | Ionic Conductivity (S cm−1) | TNM | References |
---|---|---|---|
80% PVA:20 wt% PVP | (2.2 ± 1.4) × 10−7 | - | [14] |
PVA/PVP-40 wt% KOH | 1.5 ± 1.1 × 10−4 | - | [14] |
P (VdF-HFP)-PVAc/(EC/PC/1MLiClO4) | 2.3 × 10−3 | - | [17] |
92.5 PVA/7.5 PAN/25% NH4SCN | 2.4 × 10−3 | - | [19] |
PVA-PVP + 10 wt% NaF | 7.50 × 10−4 | 0.89–0.91 | [21] |
PVA/PVP + 20 wt% Li2CO3 | 1.15 × 10−5 | - | [22] |
PVP-PVA/5 wt% NaHCO3 | 1.13 × 10−5 | - | [23] |
50 wt% PVA:50 wt% PVP:30 wt% NH4NO3 | 1.41 × 10−3 | [24] | |
PVA:CS + 20 wt% LiClO4 | 3 × 10−6 | [43] | |
PVA:CS + 40 wt% NH4I | 7.69 × 10−7 | [44] | |
PVA:PVP (50:50 wt%) + 20 wt% NaSCN. | 8.1 × 10−5 | 0.99 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badi, N.; Theodore, A.M.; Alghamdi, S.A.; Al-Aoh, H.A.; Lakhouit, A.; Roy, A.S.; Alatawi, A.S.; Ignatiev, A. Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application. Polymers 2022, 14, 3837. https://doi.org/10.3390/polym14183837
Badi N, Theodore AM, Alghamdi SA, Al-Aoh HA, Lakhouit A, Roy AS, Alatawi AS, Ignatiev A. Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application. Polymers. 2022; 14(18):3837. https://doi.org/10.3390/polym14183837
Chicago/Turabian StyleBadi, Nacer, Azemtsop Manfo Theodore, Saleh A. Alghamdi, Hatem A. Al-Aoh, Abderrahim Lakhouit, Aashis S. Roy, Ayshah S. Alatawi, and Alex Ignatiev. 2022. "Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application" Polymers 14, no. 18: 3837. https://doi.org/10.3390/polym14183837
APA StyleBadi, N., Theodore, A. M., Alghamdi, S. A., Al-Aoh, H. A., Lakhouit, A., Roy, A. S., Alatawi, A. S., & Ignatiev, A. (2022). Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application. Polymers, 14(18), 3837. https://doi.org/10.3390/polym14183837