Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading
Abstract
:1. Introduction
2. Geometry
3. Materials and Methods
3.1. Materials
3.2. Tensile Test
3.3. Quasi-Static Compression Test for OET
4. Numerical Simulation
4.1. The Damage Model
4.2. Finite Element Modeling (FEM)
5. Result and Discussion
5.1. Experimental and Simulation Analysis
5.2. The Relationship between OET Compression Performance and Rate
5.3. The Effect of Temperature on OET
5.4. Comparison between Different Types of Tubes
6. Conclusions
- (1)
- To accurately predict the mechanical behavior of the model, the simulation results are compared with the experimental data, and the consequence shows that the simulation results are consistent with the experimental results;
- (2)
- At the same temperature, due to the rate sensitivity of PLA material, when the rate is 1 mm/min, OET has the best energy absorption effect;
- (3)
- Comparing the experimental results of the OET model at the same rate and different temperatures, it is determined that the CFE of OET rises with increasing temperature, which reflects the temperature sensitivity of PLA materials;
- (4)
- When OET is without brittle cracking, its energy absorption capacity is better than that of CST. When the OET is brittle and cracked, its structural superiority is not reflected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vimal Kannan, I.; Rajkumar, R. Deformation and energy absorption analysis of simple and multi-cell thin-walled tubes under quasi-static axial crushing. Int. J. Crashworthiness 2019, 25, 121–130. [Google Scholar] [CrossRef]
- Baykasoglu, C.; Cetin, M.T. Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading. Int. J. Crashworthiness 2015, 20, 95–106. [Google Scholar] [CrossRef]
- Li, J.; Gao, G.; Guan, W.; Wang, S.; Yu, Y. Experimental and numerical investigations on the energy absorption of shrink circular tube under quasi-static loading. Int. J. Mech. Sci. 2018, 137, 284–294. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W.; Lin, Z. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression. Thin Walled Struct. 2018, 130, 321–331. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Lin, J.; Zhang, F.; Wang, Y.; Yan, X. Crushing responses and optimization of novel sandwich columns. Compos. Struct. 2021, 263, 113682. [Google Scholar] [CrossRef]
- Nia, A.A.; Chahardoli, S. Mechanical behavior of nested multi-tubular structures under quasi-static axial load. Thin Walled Struct. 2016, 106, 376–389. [Google Scholar] [CrossRef]
- Lu, B.; Shen, C.; Zhang, J.; Zheng, D.; Li, Z. Energy absorption analysis of square-circle hybrid section tubes under axial loading. Int. J. Crashworthiness 2020, 27, 800–815. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W. Experimental and numerical investigation of a novel sandwich sinusoidal lateral corrugated tubular structure under axial compression. Int. J. Mech. Sci. 2019, 151, 274–287. [Google Scholar] [CrossRef]
- Ma, J.; You, Z. Energy Absorption of Thin-Walled Square Tubes with a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation. J. Appl. Mech. 2014, 81, 011003. [Google Scholar] [CrossRef]
- Ming, S.; Song, Z.; Zhou, C.; Li, T.; Du, K.; Xu, S.; Wang, B. The energy absorption of long origami-ending tubes with geometrical imperfections. Thin-Walled Struct. 2021, 161, 107415. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, B.; Ma, J.; You, Z. Dynamic axial crushing of origami crash boxes. Int. J. Mech. Sci. 2016, 118, 1–12. [Google Scholar] [CrossRef]
- Harris, J.A.; McShane, G.J. Metallic stacked origami cellular materials: Additive manufacturing, properties, and modelling. Int. J. Solids Struct. 2020, 185, 448–466. [Google Scholar] [CrossRef]
- Dundar, M.A.; Dhaliwal, G.S.; Ayorinde, E.; Al-Zubi, M. Tensile, compression, and flexural characteristics of acrylonitrile–butadiene–styrene at low strain rates: Experimental and numerical investigation. Polym. Polym. Compos. 2020, 29, 331–342. [Google Scholar] [CrossRef]
- Dean, G.; Wright, L. An evaluation of the use of finite element analysis for predicting the deformation of plastics under impact loading. Polym. Test. 2003, 22, 625–631. [Google Scholar] [CrossRef]
- Omar, M.F.; Akil, H.M.; Ahmad, Z.A. Measurement and prediction of compressive properties of polymers at high strain rate loading. Mater. Des. 2011, 32, 4207–4215. [Google Scholar] [CrossRef]
- Wang, S.; Wen, L.; Xiao, J.; Lei, M.; Liang, J. Influence of strain rate and temperature on mechanical properties of carbon woven-ply PPS thermoplastic laminates under dynamic compression. Polym. Test. 2020, 89, 106725. [Google Scholar] [CrossRef]
- Nasraoui, M.; Forquin, P.; Siad, L.; Rusinek, A. Influence of strain rate, temperature and adiabatic heating on the mechanical behaviour of poly-methyl-methacrylate: Experimental and modelling analyses. Mater. Des. 2012, 37, 500–509. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Omidi, M.J. Compressive response of glass–fiber reinforced polymeric composites to increasing compressive strain rates. Compos. Struct. 2009, 89, 517–523. [Google Scholar] [CrossRef]
- Alexander, J.M. An Approximate Analysis of The Collapse of Thin Cylindrical Shells under Axial Loading. Q. J. Mech. Appl. Math. 1960, 13, 10–15. [Google Scholar] [CrossRef]
- Wierzbicki, T.; Abramowicz, W. On the Crushing Mechanics of Thin-Walled Structures. J. Appl. Mech. 1983, 50, 727–734. [Google Scholar] [CrossRef]
- Abramowicz, W.; Wierzbicki, T. Axial Crushing of Multicorner Sheet Metal Columns. J. Appl. Mech. 1989, 56, 113–120. [Google Scholar] [CrossRef]
- Yang, K.; Xu, S.; Zhou, S.; Shen, J.; Xie, Y.M. Design of dimpled tubular structures for energy absorption. Thin Walled Struct. 2017, 112, 31–40. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Y.; Wang, F.; Liang, W.; Wang, Z. Progressive Failure and Energy Absorption of Chopped Bamboo Fiber Reinforced Polybenzoxazine Composite under Impact Loadings. Polymers 2020, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- Singace, A.A.; El-Sobky, H. Behaviour of axially crushed corrugated tubes. Int. J. Mech. Sci. 1997, 39, 249–268. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, G.; You, Z.; Zhang, H. Energy absorption of axially compressed thin-walled square tubes with patterns. Thin Walled Struct. 2007, 45, 737–746. [Google Scholar] [CrossRef]
- Ma, J.; Hou, D.; Chen, Y.; You, Z. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Walled Struct. 2016, 100, 38–47. [Google Scholar] [CrossRef]
- Zhou, C.H.; Wang, B.; Luo, H.Z.; Chen, Y.W.; Zeng, Q.H.; Zhu, S.Y. Quasi-Static Axial Compression of Origami Crash Boxes. Int. J. Appl. Mech. 2017, 9, 1750066. [Google Scholar] [CrossRef]
- Rasouli, A.; Azdast, T.; Mohammadzadeh, H.; Mihankhah, P.; Hasanzadeh, R. Morphological properties and mechanical performance of polylactic acid scaffolds fabricated by a novel fused filament fabrication/gas foaming coupled method. Int. J. Adv. Manuf. Tech. 2022, 119, 7463–7474. [Google Scholar] [CrossRef]
- Akerlund, E.; Diez-Escudero, A.; Grzeszczak, A.; Persson, C. The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Polymers 2022, 14, 3305. [Google Scholar] [CrossRef]
- Ming, S.; Song, Z.; Li, T.; Du, K.; Zhou, C.; Wang, B. The energy absorption of thin-walled tubes designed by origami approach applied to the ends. Mater. Des. 2020, 192, 108725. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, X.; Huang, Z. Axial crushing of Nylon and Al/Nylon hybrid tubes by FDM 3D printing. Compos. Struct. 2021, 256, 113055. [Google Scholar] [CrossRef]
- Davoudi, M.; Kim, C. Evaluation of the axial crashworthiness of thin-walled structures with various and combined cross sections. J. Mech. Sci. Tech. 2018, 32, 4271–4281. [Google Scholar] [CrossRef]
- Sallier, L.; Forquin, P. On the use of Hillerborg regularization method to model the softening behaviour of concrete subjected to dynamic tensile loading. Eur. Phys. J. Spec. Top. 2012, 206, 97–105. [Google Scholar] [CrossRef]
- Garcia, C.; Hurmane, A.; Irisarri, F.-X.; Laurin, F.; Leclercq, S.; Desmorat, R. Experimental analysis and damage modeling of the shear-out failure mode of a 3D woven composite lug. Compos. Struct. 2021, 261, 113522. [Google Scholar] [CrossRef]
- Tomasz, W. Crushing analysis of metal honeycombs. Int. J. Impact Eng. 1983, 1, 157–174. [Google Scholar]
Temperature | Rate (mm/min) | Density | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|---|
30 °C | 1 | 1250 kg/m3 | 1525 | 0.36 |
5 | 1250 kg/m3 | 2341 | 0.36 | |
10 | 1250 kg/m3 | 2277 | 0.36 | |
40 °C | 1 | 1250 kg/m3 | 1440 | 0.36 |
5 | 1250 kg/m3 | 1650 | 0.36 | |
10 | 1250 kg/m3 | 1746 | 0.36 |
Temperature | Rate (mm/min) | Specimen | SEA (J/g) | (%) | (%) | (%) | |||
---|---|---|---|---|---|---|---|---|---|
40 °C | 5 | Experiment-1 | 2131.63 | 43.48 | 668.92 | 1.26 | - | - | - |
Experiment-2 | 2188.70 | 40.46 | 622.46 | 1.17 | - | - | - | ||
Experiment-3 | 2148.93 | 44.80 | 689.23 | 1.29 | - | - | - | ||
EA | 2156.42 | 42.91 | 660.15 | 1.24 | - | - | - | ||
CST-40-5 | 1992.64 | 43.79 | 673.69 | 1.27 | 7.59 | 2.01 | 2.36 |
Temperature | Rate (mm/min) | Specimen | SEA (J/g) | CFE | (%) | (%) | (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
30 °C | 1 | Experiment-1 | 1817.85 | 35.47 | 545.69 | 1.04 | 0.30 | - | - | |
Experiment-2 | 1932.66 | 31.85 | 490.00 | 0.94 | 0.25 | - | - | |||
Experiment-3 | 1931.26 | 33.87 | 521.08 | 0.10 | 0.27 | - | - | |||
EA | 1893.92 | 33.73 | 518.92 | 0.99 | 0.27 | - | - | |||
OET-30-1 | 1728.51 | 29.72 | 457.23 | 0.87 | 0.26 | 8.73 | 12.12 | 3.70 | ||
5 | Experiment-1 | 1983.79 | 18.14 | 279.11 | 0.53 | 0.14 | - | - | ||
Experiment-2 | 1946.65 | 19.27 | 296.53 | 0.57 | 0.15 | - | - | |||
Experiment-3 | 1973.05 | 18.95 | 291.56 | 0.56 | 0.15 | - | - | |||
EA | 1967.83 | 18.79 | 289.07 | 0.55 | 0.15 | - | - | |||
OET-30-5 | 1959.10 | 22.62 | 348.08 | 0.66 | 0.18 | 0.44 | 16.67 | 16.67 | ||
10 | Experiment-1 | 2200.28 | 37.04 | 569.85 | 1.09 | 0.26 | - | - | ||
Experiment-2 | 2194.31 | 31.34 | 482.15 | 0.92 | 0.22 | - | - | |||
Experiment-3 | 2260.71 | 39.26 | 604.00 | 1.15 | 0.27 | - | - | |||
EA | 2218.43 | 35.88 | 552.00 | 1.05 | 0.25 | - | - | |||
OET-30-10 | 1995.38 | 39.24 | 603.70 | 1.15 | 0.30 | 10.05 | 9.52 | 16.67 |
Temperature | Rate (mm/min) | Specimen | SEA (J/g) | CFE | ||
---|---|---|---|---|---|---|
30 °C | 1 | OET-EA-30-1 | 1893.92 | 518.92 | 0.99 | 0.27 |
5 | OET-EA-30-5 | 1967.83 | 289.07 | 0.55 | 0.15 | |
10 | OET-EA-30-10 | 2218.43 | 552.00 | 1.05 | 0.25 |
Rate (mm/min) | Temperature | Specimen | SEA (J/g) | (%) | (%) | |||
---|---|---|---|---|---|---|---|---|
5 | 40 °C | Experiment-1 | 1906.96 | 41.49 | 638.30 | 1.22 | - | - |
Experiment-2 | 1924.47 | 31.05 | 477.69 | 0.91 | - | - | ||
Experiment-3 | 2052.02 | 41.78 | 642.77 | 1.23 | - | - | ||
EA | 1961.15 | 38.11 | 586.31 | 1.12 | - | - | ||
OET-40-5 | 1743.38 | 39.68 | 610.46 | 1.17 | 11.10 | 4.46 |
Rate (mm/min) | Temperature | Specimen | SEA (J/g) | |||
---|---|---|---|---|---|---|
5 | 50 °C | Experiment-1 | 991.92 | 20.11 | 309.38 | 0.59 |
Experiment-2 | 1014.01 | 21.33 | 238.15 | 0.63 | ||
Experiment-3 | 1044.12 | 19.35 | 297.69 | 0.57 | ||
EA | 1016.68 | 20.26 | 311.69 | 0.60 |
Rate (mm/min) | Temperature | Specimen | SEA (J/g) | CFE | ||
---|---|---|---|---|---|---|
5 | 30 °C | OET-EA-30-5 | 1967.83 | 289.07 | 0.55 | 0.15 |
40 °C | OET-EA-40-5 | 1961.15 | 586.31 | 1.12 | 0.30 | |
50 °C | OET-EA-50-5 | 1016.68 | 311.69 | 0.60 | 0.31 |
Temperature | Rate (mm/min) | Specimen | SEA (J/g) | |||
---|---|---|---|---|---|---|
50 °C | 5 | CST-Experiment-1 | 1080.84 | 14.63 | 225.08 | 0.42 |
CST-Experiment-2 | 1168.10 | 20.75 | 319.23 | 0.60 | ||
CST-Experiment-3 | 1051.08 | 15.73 | 242.00 | 0.45 | ||
EA | 1100.01 | 17.04 | 262.15 | 0.49 |
Rate (mm/min) | Temperature | Specimen | (mm) | (mm) | (N) | (N) | SEA (J/g) | CFE | (%) | (%) | (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 40 °C | CST-EA-40-5 | 60.00 | 120.00 | 2156.42 | 660.15 | 1.24 | 0.31 | - | - | - |
OET-EA-40-5 | 60.00 | 120.00 | 1961.15 | 586.31 | 1.12 | 0.30 | 9.05 | 9.67 | 3.23 | ||
50 °C | CST-EA-50-5 | 60.00 | 120.00 | 1100.01 | 262.15 | 0.49 | 0.24 | - | - | - | |
OET-EA-50-5 | 60.00 | 120.00 | 1016.68 | 311.69 | 0.60 | 0.31 | 7.58 | 22.45 | 29.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, X.; Guo, C.; Chen, W.; Wang, Y.; Zhao, J.; Lv, H. Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading. Polymers 2022, 14, 3859. https://doi.org/10.3390/polym14183859
Zuo X, Guo C, Chen W, Wang Y, Zhao J, Lv H. Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading. Polymers. 2022; 14(18):3859. https://doi.org/10.3390/polym14183859
Chicago/Turabian StyleZuo, Xiubin, Chengjie Guo, Weidong Chen, Yixiao Wang, Jian Zhao, and Huanlin Lv. 2022. "Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading" Polymers 14, no. 18: 3859. https://doi.org/10.3390/polym14183859
APA StyleZuo, X., Guo, C., Chen, W., Wang, Y., Zhao, J., & Lv, H. (2022). Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading. Polymers, 14(18), 3859. https://doi.org/10.3390/polym14183859