New Self-Repairing System for Brittle Matrix Composites Using Corrosion-Induced Intelligent Fiber
Abstract
:1. Introduction
2. Corrosion-Induced Intelligent Fiber (CIF)
2.1. General Concept
2.2. Shape Recovery Mechanism of CIF
3. Self-Repair Principle of CIF Composites
4. Derivation of the Mechanical Model
4.1. Mechanical Model of CIF
4.1.1. Basic Assumption
- The corrodible coating is evenly coated on the core fiber;
- The core fiber and the corrodible coating are well bonded at the interface and the two have good chemical compatibility;
- The influence of transverse strain of the core fiber and the corrodible coating is ignored and not incorporated into the Poisson’s ratio in formula derivation;
- The force of the core fiber and the corrodible coating is in a linear elastic state;
- The structural unit is pulled positive and compressed negative.
4.1.2. Calculation of Internal Force
4.1.3. Force Storage Optimization
4.2. Mechanical Model of CIF Composites
4.2.1. Basic Assumption
- The CIF is unidirectionally and uniformly arranged in the matrix composite;
- The influence of the Poisson’s ratio on the magnitude of the axial stress is disregarded;
- The permanent anchor ends are tightly bonded with the matrix composite without slippage;
- The force influence of the corrosion product of the corrodible coating is disregarded.
4.2.2. Calculation of Internal Force
4.2.3. Anchor Length of CIF
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description |
---|---|
Ef | elastic modulus of the core fiber |
Ec | elastic modulus of the corrodible coating |
Af | cross-sectional area of the core fiber |
Ac | cross-sectional area of the corrodible coating |
initial tensile strain of the core fiber | |
strain of the corrodible coating after equilibrium | |
Vf | volume fraction of the core fiber in the CIF |
Vc | volume fraction of the corrodible coating in the CIF |
E1 | elastic modulus of the CIF |
pre-tensile stress in the core fiber | |
pre-stress stored in the core fiber after equilibrium | |
compressive stress in the corrodible coating after equilibrium |
Symbol | Description |
---|---|
Em | elastic modulus of the brittle matrix composite |
E2 | composite elastic modulus of the matrix composite with the core fiber |
Vf1 | volume fraction of the core fiber in the CIF composite |
Vc1 | volume fraction of the corrodible coating in the CIF composite |
Vs | volume fraction of the CIFs in the CIF composite |
Vm | volume fraction of the matrix composite in the CIF composite |
pre-stress released to the brittle matrix composite after equilibrium | |
tensile stress in the core fiber after equilibrium |
References
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- De Nardi, C.; Cecchi, A.; Ferrara, L. The Influence of Self-Healing Capacity of Lime Mortars on the Behaviour of Brick-Mortar Masonry Subassemblies. Key Eng. Mater. 2017, 747, 465–471. [Google Scholar] [CrossRef]
- Maddalena, R.; Bonanno, L.; Balzano, B.; Tuinea-Bobe, C.; Sweeney, J.; Mihai, I. A crack closure system for cementitious composite materials using knotted shape memory polymer (k-SMP) fibres. Cem. Concr. Compos. 2020, 114, 103757. [Google Scholar] [CrossRef]
- Greil, P. Self-Healing Engineering Ceramics with Oxidation-Induced Crack Repair. Adv. Eng. Mater. 2020, 22, 1901121. [Google Scholar] [CrossRef]
- Albuhairi, D.; Di Sarno, L. Low-Carbon Self-Healing Concrete: State-of-the-Art, Challenges and Opportunities. Buildings 2022, 12, 1196. [Google Scholar] [CrossRef]
- Hearn, N. Saturated Permeability of Concrete as Influenced by Cracking and Self-Sealing; University of Cambridge: Cambridge, UK, 1993. [Google Scholar]
- Hearn, N.; Morley, C.T. Self-sealing property of concrete—Experimental evidence. Mater. Struct./Mater. Constr. 1997, 30, 404–411. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Serna, P. Concrete Early-Age Crack Closing by Autogenous Healing. Sustainability 2020, 12, 4476. [Google Scholar] [CrossRef]
- Qureshi, T.; Al-Tabbaa, A. Self-Healing Concrete and Cementitious Materials; Chapter 12; IntechOpen: London, UK, 2020; pp. 191–214. [Google Scholar] [CrossRef]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Edvardsen, C. Water Permeability and Autogenous Healing of Cracks in Concrete. Mater. J. 1999, 96, 448–454. [Google Scholar] [CrossRef]
- Ziegler, F.; Masuero, A.B.; Pagnussat, D.T.; Molin, D.C.C.D. Evaluation of Internal and Superficial Self-Healing of Cracks in Concrete with Crystalline Admixtures. Materials 2020, 13, 4947. [Google Scholar] [CrossRef]
- Li, G.; Huang, X.; Lin, J.; Jiang, X.; Zhang, X. Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour. Constr. Build. Mater. 2019, 200, 36–45. [Google Scholar] [CrossRef]
- Ravitheja, A.; Reddy, T.; Sashidhar, C. Self-healing concrete with crystalline admixture—A review. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 1143–1154. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, R.; Li, Y.; Guan, X. Effect of crystalline admixtures on mechanical, self-healing and transport properties of engineered cementitious composite. Cem. Concr. Compos. 2021, 124, 104256. [Google Scholar] [CrossRef]
- Xue, C.; Li, W.; Qu, F.; Sun, Z.; Shah, S.P. Self-healing efficiency and crack closure of smart cementitious composite with crystalline admixture and structural polyurethane. Constr. Build. Mater. 2020, 260, 119955. [Google Scholar] [CrossRef]
- Žáková, H.; Pazderka, J.; Reiterman, P. Textile reinforced concrete in combination with improved self-healing ability caused by crystalline admixture. Materials 2020, 13, 5787. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- De Souza Oliveira, A.; Gomes, O.d.F.M.; Ferrara, L.; Fairbairn, E.d.M.R.; Toledo Filho, R.D. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. J. Build. Eng. 2021, 41, 102400. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Pirritano, F.; Serna, P.; Ferrara, L. Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 2016, 114, 447–457. [Google Scholar] [CrossRef]
- Song, G.; Ma, N.; Li, H.N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006, 28, 1266–1274. [Google Scholar] [CrossRef]
- Siddiquee, K.N.; Billah, A.H.M.M.; Issa, A. Seismic collapse safety and response modification factor of concrete frame buildings reinforced with superelastic shape memory alloy (SMA) rebar. J. Build. Eng. 2021, 42, 102468. [Google Scholar] [CrossRef]
- Abdulridha, A.; Palermo, D.; Foo, S.; Vecchio, F.J. Behavior and modeling of superelastic shape memory alloy reinforced concrete beams. Eng. Struct. 2013, 49, 893–904. [Google Scholar] [CrossRef]
- Kuang, Y.; Ou, J. Self-repairing performance of concrete beams strengthened using superelastic SMA wires in combination with adhesives released from hollow fibers. Smart Mater. Struct. 2008, 17, 025020. [Google Scholar] [CrossRef]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Furuya, Y.; Sasaki, A.; Taya, M. Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite. Mater. Trans. JIM 1993, 34, 224–227. [Google Scholar] [CrossRef]
- Chen, W.; Feng, K.; Wang, Y.; Lin, Y.; Qian, H. Evaluation of self-healing performance of a smart composite material (SMA-ECC). Constr. Build. Mater. 2021, 290, 123216. [Google Scholar] [CrossRef]
- Cohades, A.; Hostettler, N.; Pauchard, M.; Plummer, C.J.G.; Michaud, V. Stitched shape memory alloy wires enhance damage recovery in self-healing fibre-reinforced polymer composites. Compos. Sci. Technol. 2018, 161, 22–31. [Google Scholar] [CrossRef]
- Geetha, S.; Selvakumar, M. A composite for the Future-Concrete Composite Reinforced with Shape Memory Alloy Fibres. Mater. Today Proc. 2019, 18, 5550–5555. [Google Scholar] [CrossRef]
- Jia, Y.-q.; Lu, Z.-D.; Li, L.-Z.; Wu, Z.-L. A Review of Applications and Research of Shape Memory Alloys in Civil Engineering. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 022009. [Google Scholar] [CrossRef]
- Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 1996, 35, 263–269. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Zotiadis, C.; Patrikalos, I.; Loukaidou, V.; Korres, D.M.; Karantonis, A.; Vouyiouka, S. Self-healing coatings based on poly(urea-formaldehyde) microcapsules: In situ polymerization, capsule properties and application. Prog. Org. Coat. 2021, 161, 106475. [Google Scholar] [CrossRef]
- Rule, J.D.; Sottos, N.R.; White, S.R. Effect of microcapsule size on the performance of self-healing polymers. Polymer 2007, 48, 3520–3529. [Google Scholar] [CrossRef]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Dubey, R.; Shami, T.C.; Bhasker Rao, K.U. Microencapsulation technology and applications. Def. Sci. J. 2009, 59, 82–95. [Google Scholar] [CrossRef]
- Bonilla, L.; Hassan, M.M.; Noorvand, H.; Rupnow, T.; Okeil, A. Dual self-healing mechanisms with microcapsules and shape memory alloys in reinforced concrete. J. Mater. Civ. Eng. 2018, 30, 04017227. [Google Scholar] [CrossRef]
- Aghamirzadeh, G.R.; Khalili, S.M.R.; Eslami-Farsani, R.; Saeedi, A. Experimental investigation on the smart self-healing composites based on the short hollow glass fibers and shape memory alloy strips. Polym. Compos. 2019, 40, 1883–1889. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Yu, Q. Multiple damaging and self-healing properties of cement paste incorporating microcapsules. Constr. Build. Mater. 2020, 255, 119302. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Tang, C.; Hao, W. Influencing factors on the healing performance of microcapsule self-healing concrete. Materials 2021, 14, 4139. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, Z.; Tang, C.; Hao, W. Preparation and mechanical properties of microcapsule-based self-healing cementitious composites. Materials 2021, 14, 4866. [Google Scholar] [CrossRef]
- Castaneda, H.; Hassan, M.M.; Radovic, M.; Milla, J.; Karayan, A. Self-Healing Microcapsules as Concrete Aggregates for Corrosion Inhibition in Reinforced Concrete; Transportation Consortium of South-Central States: Washington, DC, USA, 2018. [Google Scholar]
- Pulikkalparambil, H.; Sanjay, M.; Siengchin, S.; Khan, A.; Jawaid, M.; Pruncu, C.I. Self-repairing hollow-fiber polymer composites. In Woodhead Publishing Series in Composites Science and Engineering, Self-Healing Composite Materials; Woodhead Publishing: Sawston, UK, 2020; pp. 313–326. [Google Scholar] [CrossRef]
- Feng, J.; Dong, H.; Wang, R.; Su, Y. A novel capsule by poly (ethylene glycol) granulation for self-healing concrete. Cem. Concr. Res. 2020, 133, 106053. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.-X.; Li, R.-Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr. Build. Mater. 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr. Build. Mater. 2016, 121, 659–663. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 2011, 33, 763–770. [Google Scholar] [CrossRef]
- Intarasoontron, J.; Pungrasmi, W.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Constr. Build. Mater. 2021, 302, 124227. [Google Scholar] [CrossRef]
- Allahyari, H.; Heidarpour, A.; Shayan, A. Experimental and analytical studies of bacterial self-healing concrete subjected to alkali-silica-reaction. Constr. Build. Mater. 2021, 310, 125149. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, C. Engineering application of microbial self-healing concrete in lock channel wall. Mar. Georesources Geotechnol. 2022, 40, 96–103. [Google Scholar] [CrossRef]
- Sri Durga, C.S.; Ruben, N.; Sri Rama Chand, M.; Indira, M.; Venkatesh, C. Comprehensive microbiological studies on screening bacteria for self-healing concrete. Materialia 2021, 15, 101051. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, J.; Alazhari, M. Effect of microbiological growth components for bacteria-based self-healing on the properties of cement mortar. Materials 2019, 12, 1303. [Google Scholar] [CrossRef]
- Van Wylick, A.; Monclaro, A.V.; Elsacker, E.; Vandelook, S.; Rahier, H.; De Laet, L.; Cannella, D.; Peeters, E. A review on the potential of filamentous fungi for microbial self-healing of concrete. Fungal Biol. Biotechnol. 2021, 8, 16. [Google Scholar] [CrossRef]
- Feng, C.; Zong, X.; Cui, B.; Guo, H.; Zhang, W.; Zhu, J. Application of Carrier Materials in Self-Healing Cement-Based Materials Based on Microbial-Induced Mineralization. Crystals 2022, 12, 797. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Riofrio, A.; Baykara, H.; Soleymani, A.; Mahdi, H.A.; Jahangir, H.; Ibe, K. Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures. Sustainability 2022, 14, 9573. [Google Scholar] [CrossRef]
- Eran, Y.C.; Hernandez-Sanabria, E.; Boon, N.; De Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 2016, 70, 159–170. [Google Scholar] [CrossRef]
- Palin, D.; Wiktor, V.; Jonkers, H.M. A bacteria-based self-healing cementitious composite for application in low-temperature marine environments. Biomimetics 2017, 2, 13. [Google Scholar] [CrossRef]
- Erşan, Y.Ç.; Gruyaert, E.; Louis, G.; Lors, C.; De Belie, N.; Boon, N. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front. Microbiol. 2015, 6, 1228. [Google Scholar] [CrossRef]
- Chu, H.-Q.; Jiang, L.-H.; Yu, L. Effect of electrodeposition on BET surface area and microstructure of cement mortar. J. Build. Mater. 2006, 9, 627–632. (In Chinese) [Google Scholar]
- Goux, A.; Pauporte, T.; Chivot, J.; Lincot, D. Temperature effects on ZnO electrodeposition. Electrochim. Acta 2005, 50, 2239–2248. [Google Scholar] [CrossRef]
- Otsuki, N.; Ryu, J.S. Use of electrodeposition for repair of concrete with shrinkage cracks. J. Mater. Civ. Eng. 2001, 13, 136–142. [Google Scholar] [CrossRef]
- Kim, J.-K.; Yee, J.-J.; Kee, S.-H. Electrochemical deposition treatment (Edt) as a comprehensive rehabilitation method for corrosion-induced deterioration in concrete with various severity levels. Sensors 2021, 21, 6287. [Google Scholar] [CrossRef]
- Ryu, J.-S.; Otsuki, N. Crack closure of reinforced concrete by electrodeposition technique. Cem. Concr. Res. 2002, 32, 159–164. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, Q.; Zhu, H.; Woody Ju, J.; Zhou, S.; Jiang, Z. A multi-phase micromechanical model for unsaturated concrete repaired using the electrochemical deposition method. Int. J. Solids Struct. 2013, 50, 3875–3885. [Google Scholar] [CrossRef]
- Liu, L.; Dong, B. Investigation of concrete crack repair by electrochemical deposition. Int. J. Electrochem. Sci. 2021, 16, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhou, S.; Liu, K. Influence of Anode Material on the Effect of Electrophoretic Deposition for the Repair of Rust-Cracked Reinforced Concrete. Constr. Build. Mater. 2022, 335, 127466. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Q.; Ju, J.W.; Yan, Z.; Jiang, Z. Electrochemical deposition induced continuum damage-healing framework for the cementitious composite. Int. J. Damage Mech. 2021, 30, 945–963. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Yuan, L.; Zhou, Z. Effect of graphene and carbon fiber on repairing crack of concrete by electrodeposition. Ceram.-Silik. 2019, 63, 403–412. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Liu, K.; Zhou, S. Effect of colloid solution concentration of epoxy resin on properties of rust-cracked reinforced concrete repaired by electrophoretic deposition. Constr. Build. Mater. 2022, 318, 126184. [Google Scholar] [CrossRef]
- Cuenca, E.; Ferrara, L. Self-healing capacity of fiber reinforced cementitious composites. State of the art and perspectives. KSCE J. Civ. Eng. 2017, 21, 2777–2789. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Gu, C.; Su, H.; Li, V. Influence of microcrack self-healing behavior on the permeability of Engineered Cementitious Composites. Cem. Concr. Compos. 2017, 82, 14–22. [Google Scholar] [CrossRef]
- Wang, D.; Ju, Y.; Shen, H.; Xu, L. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr. Build. Mater. 2019, 197, 464–473. [Google Scholar] [CrossRef]
- Balzano, B.; Sweeney, J.; Thompson, G.; Tuinea-Bobe, C.-L.; Jefferson, A. Enhanced concrete crack closure with hybrid shape memory polymer tendons. Eng. Struct. 2021, 226, 111330. [Google Scholar] [CrossRef]
- Garg, M.; Azarsa, P.; Gupta, R. Self-healing potential and post-cracking tensile behavior of polypropylene fiber-reinforced cementitious composites. J. Compos. Sci. 2021, 5, 122. [Google Scholar] [CrossRef]
- Wei, M.; Zhong, K.; Cai, S.; Feng, T.; Zhang, N. Preparation and application of the novel resin microcapsules in self-repairing cement composites with polypropylene fibers. J. Adhes. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- Ahmad, J.; Zaid, O.; Aslam, F.; Shahzaib, M.; Ullah, R.; Alabduljabbar, H.; Khedher, K.M. A study on the mechanical characteristics of glass and nylon fiber reinforced peach shell lightweight concrete. Materials 2021, 14, 4488. [Google Scholar] [CrossRef] [PubMed]
No. | Composition | Material | Parameters | (MPa) | (MPa) | |||
---|---|---|---|---|---|---|---|---|
E (GPa) | Vf1 | σo (MPa) | ||||||
1 | Corrodible coating | Iron | 200 | 50% × 4% | - | - | - | - |
Core fiber | Steel | 200 | 50% × 4% | 2000 | 1000 | 0.5% | −18.6 | |
Matrix | Concrete | 35 | 96% | - | - | - | - | |
2 | Corrodible coating | Iron | 200 | 14% × 4% | - | - | - | - |
Core fiber | Nylon | 5.4 [77] | 86% × 4% | 800 | 687 | 12.7% | −24.5 | |
Matrix | Concrete | 35 | 96% | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, D.; Jin, Z.; Sun, J.; Wang, Z. New Self-Repairing System for Brittle Matrix Composites Using Corrosion-Induced Intelligent Fiber. Polymers 2022, 14, 3902. https://doi.org/10.3390/polym14183902
Sun Y, Wang D, Jin Z, Sun J, Wang Z. New Self-Repairing System for Brittle Matrix Composites Using Corrosion-Induced Intelligent Fiber. Polymers. 2022; 14(18):3902. https://doi.org/10.3390/polym14183902
Chicago/Turabian StyleSun, Yuyan, Dongkai Wang, Zuquan Jin, Jianwei Sun, and Ziguo Wang. 2022. "New Self-Repairing System for Brittle Matrix Composites Using Corrosion-Induced Intelligent Fiber" Polymers 14, no. 18: 3902. https://doi.org/10.3390/polym14183902
APA StyleSun, Y., Wang, D., Jin, Z., Sun, J., & Wang, Z. (2022). New Self-Repairing System for Brittle Matrix Composites Using Corrosion-Induced Intelligent Fiber. Polymers, 14(18), 3902. https://doi.org/10.3390/polym14183902