Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of PHAs
2.2. Evaluation PHAs Extraction
Calculations
2.3. Characterization of the Obtained Biopolymers
3. Results and Discussion
3.1. Production of PHA Using Mixed Microbial Cultures (MMC)
3.2. Evaluation of PHAs Extraction
3.3. Characterization of the Obtained Biopolymers
3.3.1. Quantitative 1H/13C Nuclear Magnetic Resonance (NMR)
3.3.2. Gel-Permeation Chromatography (GPC)
3.3.3. Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurian, N.S.; Das, B. Comparative Analysis of Various Extraction Processes Based on Economy, Eco-Friendly, Purity and Recovery of Polyhydroxyalkanoate: A Review. Int. J. Biol. Macromol. 2021, 183, 1881–1890. [Google Scholar] [CrossRef]
- Samaniego, K.; Matos, A.; Sánchez-Safont, E.; Candal, M.V.; Lagaron, J.M.; Cabedo, L.; Gamez-Perez, J. Role of Plasticizers on PHB/Bio-TPE Blends Compatibilized by Reactive Extrusion. Materials 2022, 15, 1226. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Odoh, C.K.; Enudi, O.C.; Banjoko, O.O.; Osiboye, O.O.; Toluwalope Odediran, E.; Louis, H. Sustainable Synthesis and Applications of Polyhydroxyalkanoates (PHAs) from Biomass. Process Biochem. 2020, 96, 174–193. [Google Scholar] [CrossRef]
- Kalia, V.C.; Ray, S.; Patel, S.K.S.; Singh, M.; Singh, G.P. The Dawn of Novel Biotechnological Applications of Polyhydroxyalkanoates. In Biotechnological Applications of Polyhydroxyalkanoates; Springer: Singapore, 2019; pp. 1–11. ISBN 9789811337598. [Google Scholar]
- Chavan, S.; Yadav, B.; Tyagi, R.D.; Drogui, P. A Review on Production of Polyhydroxyalkanoate (PHA) Biopolyesters by Thermophilic Microbes Using Waste Feedstocks. Bioresour. Technol. 2021, 341, 125900. [Google Scholar] [CrossRef]
- Gholami, A.; Mohkam, M.; Rasoul-Amini, S.; Ghasemi, Y. Industrial Production of Polyhydroxyalkanoates by Bacteria: Opportunities and Challenges. Minerva Biotechnol 2016, 28, 59–74. [Google Scholar]
- Pagliano, G.; Galletti, P.; Samorì, C.; Zaghini, A.; Torri, C. Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 624021. [Google Scholar] [CrossRef]
- Koller, M. Established and Advanced Approaches for Recovery of Microbial Polyhydroxyalkanoate (PHA) Biopolyesters from Surrounding Microbial Biomass. EuroBiotech J. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Pérez-Rivero, C.; López-Gómez, J.P.; Roy, I. A Sustainable Approach for the Downstream Processing of Bacterial Polyhydroxyalkanoates: State-of-the-Art and Latest Developments. Biochem. Eng. J. 2019, 150, 107283. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Franca, R.D.G.; Dionísio, M.; Sevrin, C.; Grandfils, C.; Reis, M.A.M.; Lourenço, N.D. Polyhydroxyalkanoates from a Mixed Microbial Culture: Extraction Optimization and Polymer Characterization. Polymers 2022, 14, 2155. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; Martinelli, A.; Pavan, P.; Majone, M.; Valentino, F. Downstream Processing and Characterization of Polyhydroxyalkanoates (PHAs) Produced by Mixed Microbial Culture (MMC) and Organic Urban Waste as Substrate. Biomass Convers. Biorefin. 2021, 11, 693–703. [Google Scholar] [CrossRef]
- Colombo, B.; Pereira, J.; Martins, M.; Torres-Acosta, M.A.; Dias, A.C.R.V.; Lemos, P.C.; Ventura, S.P.M.; Eisele, G.; Alekseeva, A.; Adani, F.; et al. Recovering PHA from Mixed Microbial Biomass: Using Non-Ionic Surfactants as a Pretreatment Step. Sep. Purif. Technol. 2020, 253, 117521. [Google Scholar] [CrossRef]
- Samorì, C.; Abbondanzi, F.; Galletti, P.; Giorgini, L.; Mazzocchetti, L.; Torri, C.; Tagliavini, E. Extraction of Polyhydroxyalkanoates from Mixed Microbial Cultures: Impact on Polymer Quality and Recovery. Bioresour. Technol. 2015, 189, 195–202. [Google Scholar] [CrossRef]
- Patel, M.; Gapes, D.J.; Newman, R.H.; Dare, P.H. Physico-Chemical Properties of Polyhydroxyalkanoate Produced by Mixed-Culture Nitrogen-Fixing Bacteria. Appl. Microbiol. Biotechnol. 2009, 82, 545–555. [Google Scholar] [CrossRef]
- Madkour, M.H.; Heinrich, D.; Alghamdi, M.A.; Shabbaj, I.I.; Steinbüchel, A. PHA Recovery from Biomass. Biomacromolecules 2013, 14, 2963–2972. [Google Scholar] [CrossRef] [PubMed]
- Elhami, V.; van de Beek, N.; Wang, L.; Picken, S.J.; Tamis, J.; Sousa, J.A.B.; Hempenius, M.A.; Schuur, B. Extraction of Low Molecular Weight Polyhydroxyalkanoates from Mixed Microbial Cultures Using Bio-Based Solvents. Sep. Purif. Technol. 2022, 299, 121773. [Google Scholar] [CrossRef]
- Montiel-Jarillo, G.; Suárez-Ojeda, M.E.; Carrera, J. Production of PHB-Co-PHV from Synthetic Fermented Olive-Mill-Wastewater Containing Polyphenols. J. Water Process. Eng. 2022; submmited. [Google Scholar]
- Montiel-Jarillo, G.; Carrera, J.; Suárez-Ojeda, M.E. Enrichment of a Mixed Microbial Culture for Polyhydroxyalkanoates Production: Effect of PH and N and P Concentrations. Sci. Total Environ. 2017, 583, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Suárez-Ojeda, M.E. Bioplastic Recovery from Wastewater: A New Protocol for Polyhydroxyalkanoates (PHA) Extraction from Mixed Microbial Cultures. Bioresour. Technol. 2019, 282, 361–369. [Google Scholar] [CrossRef]
- Samorì, C.; Basaglia, M.; Casella, S.; Favaro, L.; Galletti, P.; Giorgini, L.; Marchi, D.; Mazzocchetti, L.; Torri, C.; Tagliavini, E. Dimethyl Carbonate and Switchable Anionic Surfactants: Two Effective Tools for the Extraction of Polyhydroxyalkanoates from Microbial Biomass. Green Chem. 2015, 17, 1047–1056. [Google Scholar] [CrossRef]
- Arcos-Hernández, M.V.; Laycock, B.; Donose, B.C.; Pratt, S.; Halley, P.; Al-Luaibi, S.; Werker, A.; Lant, P.A. Physicochemical and Mechanical Properties of Mixed Culture Polyhydroxyalkanoate (PHBV). Eur. Polym. J. 2013, 49, 904–913. [Google Scholar] [CrossRef]
- Dai, Y.; Lambert, L.; Yuan, Z.; Keller, J. Characterisation of Polyhydroxyalkanoate Copolymers with Controllable Four-Monomer Composition. J. Biotechnol. 2008, 134, 137–145. [Google Scholar] [CrossRef]
- Rosengart, A.; Cesário, M.T.; de Almeida, M.C.M.D.; Raposo, R.S.; Espert, A.; de Apodaca, E.D.; da Fonseca, M.M.R. Efficient P(3HB) Extraction from Burkholderia Sacchari Cells Using Non-Chlorinated Solvents. Biochem. Eng. J. 2015, 103, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Montano-Herrera, L.; Laycock, B.; Werker, A.; Pratt, S. The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents. Bioengineering 2017, 4, 20. [Google Scholar] [CrossRef]
- Woraittinun, N.; Suwannasilp, B.B. Polyhydroxyalkanoate Production from Different Carbon Substrates Using Sludge from a Wastewater Treatment Plant: Microbial Communities, Polymer Compositions, and Thermal Characteristics. Environ. Prog. Sustain. Energy 2017, 36, 1754–1764. [Google Scholar] [CrossRef]
- Colombo, B.; Sciarria, T.P.; Reis, M.; Scaglia, B.; Adani, F. Polyhydroxyalkanoates (PHAs) Production from Fermented Cheese Whey by Using a Mixed Microbial Culture. Bioresour. Technol. 2016, 218, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.F.; Oliveira, C.S.S.; Carmo, I.T.D.; Gouveia, A.R.; Pardelha, F.; Ramos, A.M.; Reis, M.A.M. Response of a Three-Stage Process for PHA Production by Mixed Microbial Cultures to Feedstock Shift: Impact on Polymer Composition. New Biotechnol. 2014, 31, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Sagastume, F.; Karlsson, A.; Johansson, P.; Pratt, S.; Boon, N.; Lant, P.; Werker, A. Production of Polyhydroxyalkanoates in Open, Mixed Cultures from a Waste Sludge Stream Containing High Levels of Soluble Organics, Nitrogen and Phosphorus. Water Res. 2010, 44, 5196–5211. [Google Scholar] [CrossRef] [PubMed]
- de Souza Reis, G.A.; Michels, M.H.A.; Fajardo, G.L.; Lamot, I.; de Best, J.H. Optimization of Green Extraction and Purification of PHA Produced by Mixed Microbial Cultures from Sludge. Water 2020, 12, 1185. [Google Scholar] [CrossRef]
- Abbasi, M.; Coats, E.R.; McDonald, A.G. Green Solvent Extraction and Properties Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biosynthesized by Mixed Microbial Consortia Fed Fermented Dairy Manure. Bioresour. Technol. Rep. 2022, 18, 101065. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Microbial Poly-3-Hydroxybutyrate and Related Copolymers. In Industrial Biorefineries and White Biotechnology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 575–605. ISBN 9780444634535. [Google Scholar]
- Ivanova, G.; Serafim, L.S.; Lemos, P.C.; Ramos, A.M.; Reis, M.A.M.; Cabrita, E.J. Influence of Feeding Strategies of Mixed Microbial Cultures on the Chemical Composition and Microstructure of Copolyesters P(3HB-Co-3HV) Analyzed by NMR and Statistical Analysis. Magn. Reson. Chem. 2009, 47, 497–504. [Google Scholar] [CrossRef]
- Irorere, V.U.; Bagheriasl, S.; Blevins, M.; Kwiecień, I.; Stamboulis, A.; Radecka, I. Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia Eutropha from Different Carbon Sources. Int. J. Polym. Sci. 2014, 2014, 705359. [Google Scholar] [CrossRef]
- Žagar, E.; Kržan, A.; Adamus, G.; Kowalczuk, M. Sequence Distribution in Microbial Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Co-Polyesters Determined by NMR and MS. Biomacromolecules 2006, 7, 2210–2216. [Google Scholar] [CrossRef]
- Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K. Nuclear Magnetic Resonance Studies on Poly (β-hydroxybutyrate) and a Copolyester of P-Hydroxybutyrate and P-Hydroxyvalerate Isolated from Alcaligenes Eutrophus H16. Macromolecules 1986, 19, 2860–2864. [Google Scholar] [CrossRef]
- Kamiya, N.; Yamamoto, Y.; Inoue, Y.; ChiijB, R.; Yoshiharu Doi, J. Microstructure of Bacterially Synthesized Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Macromolecules 1989, 22, 1676–1682. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The Chemomechanical Properties of Microbial Polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Pederson, E.N.; McChalicher, C.W.J.; Srienc, F. Bacterial Synthesis of PHA Block Copolymers. Biomacromolecules 2006, 7, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; He, N.; Huang, J.; Zhu, K.; Shao, W.; Wang, H.; Yuan, W.; Li, Q. Optimization of Polyhydroxybutyrate (PHB) Production by Excess Activated Sludge and Microbial Community Analysis. J. Hazard. Mater. 2011, 185, 8–16. [Google Scholar] [CrossRef]
- Fiorese, M.L.; Freitas, F.; Pais, J.; Ramos, A.M.; de Aragão, G.M.F.; Reis, M.A.M. Recovery of Polyhydroxybutyrate (PHB) from Cupriavidus Necator Biomass by Solvent Extraction with 1,2-Propylene Carbonate. Eng. Life Sci. 2009, 9, 454–461. [Google Scholar] [CrossRef]
- Gobi, K.; Vadivelu, V.M. Polyhydroxyalkanoate Recovery and Effect of in Situ Extracellular Polymeric Substances Removal from Aerobic Granules. Bioresour. Technol. 2015, 189, 169–176. [Google Scholar] [CrossRef]
- López-Abelairas, M.; García-Torreiro, M.; Lú-Chau, T.; Lema, J.M.; Steinbüchel, A. Comparison of Several Methods for the Separation of Poly(3-Hydroxybutyrate) from Cupriavidus Necator H16 Cultures. Biochem. Eng. J. 2015, 93, 250–259. [Google Scholar] [CrossRef]
- Yabueng, N.; Napathorn, S.C. Toward Non-Toxic and Simple Recovery Process of Poly(3-Hydroxybutyrate) Using the Green Solvent 1,3-Dioxolane. Process Biochem. 2018, 69, 197–207. [Google Scholar] [CrossRef]
- Bengtsson, S.; Pisco, A.R.; Johansson, P.; Lemos, P.C.; Reis, M.A.M. Molecular Weight and Thermal Properties of Polyhydroxyalkanoates Produced from Fermented Sugar Molasses by Open Mixed Cultures. J. Biotechnol. 2010, 147, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Gahlawat, G.; Soni, S.K. Valorization of Waste Glycerol for the Production of Poly (3-Hydroxybutyrate) and Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Copolymer by Cupriavidus Necator and Extraction in a Sustainable Manner. Bioresour. Technol. 2017, 243, 492–501. [Google Scholar] [CrossRef] [PubMed]
Sample | Pre-Treatment with NaClO | RE (%) | |
---|---|---|---|
DMC (at 90 °C) | CF (at 60 °C) | ||
Biomass enriched in PHB | No | 4 ± 3 | 2 ± 1 |
Yes | 8 ± 3 | 17 ± 1 | |
Biomass enriched in PHBV | No | 17 ± 1 | 5 ± 2 |
Yes | 25 ± 4 | 23 ± 2 |
Position | Diad/Triad | 13C (ppm) |
---|---|---|
V5 | VV | 9.33 |
VB | 9.36 | |
B4 | BB | 19.73 |
BV | 19.77 | |
V4 | VVV | 26.75 |
BVV | 26.77 | |
VVB | 26.82 | |
BVB | 26.85 | |
V2 | VVV | 38.64 |
BVV | 38.65 | |
VVB | 38.76 | |
BVB | 38.79 | |
B2 | BV | 40.77 |
BB | 40.78 | |
B3 | VB | 67.61 |
VV | 67.67 | |
V3 | BB | 71.87 |
BV | 71.91 | |
B1 | BB | 169.15 |
BV | 169.32 | |
V1 | VB | 169.35 |
VV | 169.52 |
Monomer | FB | 0.587 a 0.584 b |
FV | 0.413 a 0.416 b | |
Dyad | FBB | 0.409 |
FBV | 0.176 | |
FVB | 0.151 | |
FVV | 0.264 | |
Triad | FVVV | 0.181 |
FVVB | 0.081 | |
FBVV | 0.075 | |
FBVB | 0.075 |
PHA | Mw (×104 Da) | Mn (×104 Da) | PDI |
---|---|---|---|
PHB | 4.53 | 1.69 | 2.7 |
PHBV | 3.49 | 1.23 | 2.8 |
PHA | Td-5% | Td-max | Tm1 | ΔHm1 | Tm2 | ΔHm2 | Xc (%) |
---|---|---|---|---|---|---|---|
PHB | 244.9 | -- | -- | 154.6 | 47.2 | 35.8 | |
PHBV | 242.3 | 78.3 | 15.9 | 152.9 | 3.44 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montiel-Jarillo, G.; Morales-Urrea, D.A.; Contreras, E.M.; López-Córdoba, A.; Gómez-Pachón, E.Y.; Carrera, J.; Suárez-Ojeda, M.E. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers 2022, 14, 3938. https://doi.org/10.3390/polym14193938
Montiel-Jarillo G, Morales-Urrea DA, Contreras EM, López-Córdoba A, Gómez-Pachón EY, Carrera J, Suárez-Ojeda ME. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers. 2022; 14(19):3938. https://doi.org/10.3390/polym14193938
Chicago/Turabian StyleMontiel-Jarillo, Gabriela, Diego A. Morales-Urrea, Edgardo M. Contreras, Alex López-Córdoba, Edwin Yesid Gómez-Pachón, Julián Carrera, and María Eugenia Suárez-Ojeda. 2022. "Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction" Polymers 14, no. 19: 3938. https://doi.org/10.3390/polym14193938
APA StyleMontiel-Jarillo, G., Morales-Urrea, D. A., Contreras, E. M., López-Córdoba, A., Gómez-Pachón, E. Y., Carrera, J., & Suárez-Ojeda, M. E. (2022). Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers, 14(19), 3938. https://doi.org/10.3390/polym14193938