Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Structure of Polyurethane and Acrylic Polymers
2.3. Synthesis of SPUs
2.4. Synthesis of HPUs
2.5. Fabrication of Urethane-Acrylate Semi-IPN PSAs
2.6. Characterization
3. Results and Discussion
3.1. SPU and HPU Syntheses
3.2. SPU-Based Urethane-Acrylic Semi-IPN PSA
3.2.1. 1H-NMR Analysis
3.2.2. FT-IR Analysis
3.2.3. Thermal Analysis
3.2.4. Adhesive Properties of SPU-Based Semi-IPN PSAs
3.3. HPU-Based Urethane-Acrylic Semi-IPN PSA
3.3.1. 1H-NMR Analysis
3.3.2. FT-IR Analysis
3.3.3. Thermal Analysis
3.3.4. Adhesive Properties of HPU-Based Semi-IPN PSAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehravar, E.; Gross, M.A.; Agirre, A.; Reck, B.; Leiza, J.R.; Asua, J.M. Importance of film morphology on the performance of thermo-responsive waterborne pressure sensitive adhesives. Eur. Polym. J. 2018, 98, 63–71. [Google Scholar] [CrossRef]
- Mapari, S.; Mestry, S.; Mhaske, S.T. Developments in pressure-sensitive adhesives: A review. Polym. Bull. 2021, 78, 4075–4108. [Google Scholar] [CrossRef]
- Kim, P.S.; Lee, S.-M.; Jung, S.-H.; Lee, W.-K. Study on Crosslinking Properties of Acrylic Pressure-Sensitive Adhesives. J. Adhes. Interface 2013, 14, 43–48. [Google Scholar] [CrossRef]
- Chang, E.P. Viscoelastic Properties of Pressure-Sensitive Adhesives. J. Adhes. 1997, 60, 233–248. [Google Scholar] [CrossRef]
- Bae, J.H.; Won, J.C.; Lim, W.B.; Kim, B.J.; Lee, J.H.; Min, J.G.; Seo, M.J.; Mo, Y.H.; Huh, P.H. Tacky-Free Polyurethanes Pressure-Sensitive Adhesives by Molecular-Weight and HDI Trimer Design. Materials 2021, 14, 2164. [Google Scholar] [CrossRef]
- You, R.; Lee, S.H.; Park, W.H. Mechanical Properties of Acrylic Pressure-Sensitive Adhesives Containing Functional Monomers. Text. Sci. Eng. 2016, 53, 347–353. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kim, S.; Kim, S.-E.; Kim, H.-J.; Kim, S.D. Viscoelastic properties and peel strength of water-borne acrylic PSAs for labels. J. Adhes. Sci. Technol. 2007, 21, 109–123. [Google Scholar] [CrossRef]
- Moon, H.; Jeong, K.; Kwak, M.J.; Choi, S.Q.; Im, S.G. Solvent-Free Deposition of Ultrathin Copolymer Films with Tunable Viscoelasticity for Application to Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces 2018, 10, 32668–32677. [Google Scholar] [CrossRef]
- Back, J.-H.; Kwon, Y.; Roldao, J.C.; Yu, Y.; Kim, H.-J.; Gierschner, J.; Lee, W.; Kwon, M.S. Synthesis of solvent-free acrylic pressure-sensitive adhesivesviavisible-light-driven photocatalytic radical polymerization without additives. Green Chem. 2020, 22, 8289–8297. [Google Scholar] [CrossRef]
- Fuensanta, M.; Vallino-Moyano, M.A.; Martin-Martinez, J.M. Balanced Viscoelastic Properties of Pressure Sensitive Adhesives Made with Thermoplastic Polyurethanes Blends. Polymers 2019, 11, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Poh, B.T. Natural Rubber-Based Pressure-Sensitive Adhesives: A Review. J. Polym. Environ. 2011, 19, 793–811. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Weisbrodt, M.; Schmidt, B.; Gziut, K. Influence of Acrylic Acid on Kinetics of UV-Induced Cotelomerization Process and Properties of Obtained Pressure-Sensitive Adhesives. Materials 2020, 13, 5661. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.-Y.; Lim, D.-H.; Park, J.-W.; Kim, H.-J.; Jeong, H.-M.; Takemura, A. Adhesion Performance and Surface Characteristics of Low Surface Energy PSAs Fluorinated by UV Polymerization. Polym. Eng. Sci. 2013, 53, 1968–1978. [Google Scholar] [CrossRef]
- Park, H.-W.; Seo, H.-S.; Lee, J.-H.; Shin, S. Adhesion improvement of the acrylic pressure-sensitive adhesive to low-surface-energy substrates using silicone urethane dimethacrylates. Eur. Polym. J. 2020, 137, 109949. [Google Scholar] [CrossRef]
- Bayer, O. Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew. Chem. 1947, 59, 257–272. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakano, S.; Ito, K.; Imamura, K.; Fujii, S.; Sasaki, M.; Urahama, Y. Adhesion properties of polyurethane pressure-sensitive adhesive. J. Adhes. Sci. Technol. 2013, 27, 263–277. [Google Scholar] [CrossRef]
- Akram, N.; Zia, K.M.; Saeed, M.; Mansha, A.; Khan, W.G. Morphological studies of polyurethane based pressure sensitive adhesives by tapping mode atomic force microscopy. J. Polym. Res. 2018, 25, 194. [Google Scholar] [CrossRef]
- Fuensanta, M.; Martin-Martínez, J.M. Thermoplastic polyurethane pressure sensitive adhesives made with mixtures of polypropylene glycols of different molecular weights. Int. J. Adhes. Adhes. 2019, 88, 81–90. [Google Scholar] [CrossRef]
- Fuensanta, M.; Martín-Martínez, J.M. Influence of the hard segments content on the structure, viscoelastic and adhesion properties of thermoplastic polyurethane pressure sensitive adhesives. J. Adhes. Sci. Technol. 2020, 34, 2652–2671. [Google Scholar] [CrossRef]
- Fuensanta, M.; Martín-Martínez, J.M. Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property. Prog. Org. Coat. 2018, 118, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Fuensanta, M.; Martín-Martínez, J.M. Viscoelastic and Adhesion Properties of New Poly(Ether-Urethane) Pressure-Sensitive Adhesives. Front. Mech. Eng. 2020, 6, 34. [Google Scholar] [CrossRef]
- Athawale, V.D.; Kolekar, S.L.; Raut, S.S. Recent Developments in Polyurethanes and Poly(acrylates) Interpenetrating Polymer Networks. J. Macromol. Sci. Polym. Rev. 2003, 43, 1–26. [Google Scholar] [CrossRef]
- Jaisankar, S.N.; Lakshminarayana, Y.; Radhakrishnan, G. Polyurethane-Poly(Ethyl Hexyl Acrylate-Co-Methyl Methacrylate) Interpenetrating Polymer Networks. Polym.-Plast. Technol. Eng. 2005, 44, 633–643. [Google Scholar] [CrossRef]
- Merlin, D.L.; Sivasankar, B. Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 2009, 45, 165–170. [Google Scholar] [CrossRef]
- Zenoozi, S.; Mohamad Sadeghi, G.M.; Rafiee, M. Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 2020, 140, 109974. [Google Scholar] [CrossRef]
- Alizadeh, N.; Broughton, R.M.; Auad, M.L. Graft Semi-Interpenetrating Polymer Network Phase Change Materials for Thermal Energy Storage. ACS Appl. Polym. Mater. 2021, 3, 1785–1794. [Google Scholar] [CrossRef]
- Hao, P.; Zhao, T.; Wang, L.; Liu, S.; Tang, E.; Xu, X. IPN structured UV-induced peelable adhesive tape prepared by isocyanate terminated urethane oligomer crosslinked acrylic copolymer and photo-crosslinkable trifunctional acrylic monomer. Prog. Org. Coat. 2019, 137, 105281. [Google Scholar] [CrossRef]
- Shim, G.-S.; Kim, J.-S.; Kim, H.-J. Behavior and Adhesion Performance of Acrylic PSAs using Semi-IPN Structure and UV/UV Stepwise Curing. J. Ind. Eng. Chem. 2020, 89, 139–146. [Google Scholar] [CrossRef]
- Kim, P.-S.; Lee, S.-W.; Park, J.-W.; Park, C.-H.; Kim, H.J. Kinetic and characterization of UV-curable silicone urethane methacrylate in semi-IPN-structured acrylic PSAs. J. Adhes. Sci. Technol. 2013, 27, 1866–1872. [Google Scholar] [CrossRef]
- Güney, A.; Gardiner, C.; McCormack, A.; Malda, J.; Grijpma, D.W. Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering 2018, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, A.; Chattopadhyay, D.K.; Jagadeesh, B.; Raju, K.V.S.N. Structural investigations of polypropylene glycol (PPG) and isophorone diisocyanate (IPDI)-based polyurethane prepolymer by 1D and 2D NMR spectroscopy. J. Polym. Sci. A Polym. Chem. 2005, 43, 1196–1209. [Google Scholar] [CrossRef]
- Jeong, B.; Cheon, J.; Chun, J.; Mok, D.; Lee, H. Synthesis and Characterization of Polyurethane Elastomer. J. Adhes. Interface 2009, 10, 169–173. [Google Scholar]
- Trovati, G.; Sanches, E.A.; Neto, S.C.; Mascarenhas, Y.P.; Chierice, G.O. Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 2010, 115, 263–268. [Google Scholar] [CrossRef]
- Naheed, S.; Zuber, M.; Salman, M.; Rasool, N.; Siddique, Z.; Shaik, M.R.; Sharaf, M.A.F.; Abdelgawad, A.; Sekou, D.; Awwad, E.M. Impact of Macrodiols on the Morphological Behavior of H12MDI/HDO-Based Polyurethane Elastomer. Polymers 2021, 13, 2060. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.M.; Lee, K.H.; Skrovanek, D.J.; Painter, P.C. Hydrogen Bonding in Polymers. 4. Infrared Temperature Studies of a Simple Polyurethane. Macromoleules 1986, 19, 2149–2157. [Google Scholar] [CrossRef]
- Coleman, M.M.; Skrovanek, D.J.; Hu, J.; Painter, P.C. Hydrogen Bonding in Polymer Blends. 1. FTIR Studies of Urethane-Ether Blends. Macromoleules 1988, 21, 59–65. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Wu, Y. Robust Stretchable Thermoplastic Polyurethanes with Long Soft Segments and Steric Semisymmetric Hard Segments. Ind. Eng. Chem. Res. 2020, 59, 4483–4492. [Google Scholar] [CrossRef]
- Peng, H.; Du, X.; Cheng, X.; Wang, H.; Du, Z. Room-temperature self-healable and stretchable waterborne polyurethane film fabricated via multiple hydrogen bonds. Prog. Org. Coat. 2021, 151, 106081. [Google Scholar] [CrossRef]
- Yildirim, E.; Yurtsever, M. The role of diisocyanate and soft segment on the intersegmental interactions in urethane and urea based segmented copolymers: A DFT study. Comput. Theor. Chem. 2014, 1035, 28–38. [Google Scholar] [CrossRef]
- Prisacariu, C. Polyurethane Elastomers, 1st ed.; Springer: Vienna, NY, USA, 2011; pp. 1–255. [Google Scholar] [CrossRef]
- He, Y.; Xie, D.; Zhang, X. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J. Mater. Sci. 2014, 49, 7339–7352. [Google Scholar] [CrossRef]
- Eceiza, A.; Martin, M.D.; de la Caba, K.; Kortaberria, G.; Gabilondo, N.; Corcuera, M.A.; Mondragon, I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polym. Eng. Sci. 2008, 48, 297–306. [Google Scholar] [CrossRef]
- Jia, D.; Pang, Y.; Liang, X. Mechanism of Adhesion of Polyurethane/ Polymethacrylate Simultaneous Interpenetrating Networks Adhesives to Polymer Substrates. J. Polym. Sci. B Polym. Phys. 1994, 32, 817–823. [Google Scholar] [CrossRef]
- Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S.K. Degradation Study of Biobased Polyester–Polyurethane and its Nanocomposite Under Natural Soil Burial, UV Radiation and Hydrolytic-Salt Water Circumstances. J. Polym. Environ. 2018, 26, 1528–1539. [Google Scholar] [CrossRef]
- Wang, A.; Gao, H.; Sun, Y.; Sun, Y.L.; Yang, Y.W.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J. Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Int. J. Pharm. 2013, 441, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Król, P.; Uram, Ł.; Król, B.; Pielichowska, K.; Walczak, M. Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl isocyanate)-based polyurethane films. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 483–494. [Google Scholar] [CrossRef] [PubMed]
Urethane Prepolymer | Polyol | Diisocyanate | Molar Ratio (PPG/Diisocyanate/DEG) | Mw (g/mol) | PDI | OHV (KOH mg/g) | Hard Segment Content (HS) |
---|---|---|---|---|---|---|---|
SPU-6I | PPG 6000 | IPDI | 1.30:1:0 | 46,100 | 1.73 | 2.20 | 2.9% |
SPU-4I | PPG 4000 | 1.10:1:0 | 49,400 | 1.89 | 1.73 | 5.1% | |
SPU-2I | PPG 2000 | 1.02:1:0 | 46,100 | 1.95 | 1.55 | 11.0% | |
HPU-H | PPG 2000 | HDI | 0.71:1:0.3 | 137,000 | 1.71 | 0.73 | 12.4% |
HPU-I | IPDI | 0.71:1:0.3 | 105,000 | 1.93 | 1.43 | 15.2% | |
HPU-HM | H12MDI | 0.71:1:0.3 | 111,000 | 1.86 | 1.15 | 17.2% |
Sample | N-H Peak Area | Relative Absorbance of C=O Groups in Polyurethane | ||
---|---|---|---|---|
Free C=O (AF, 1720 cm−1) | Disordered H-Bond C=O (AD, 1700 cm−1) | Ordered H-Bond C=O (AO, 1685 cm−1) | ||
SPU-6I | 119.5 | 67.6% | 32.4% | - |
SPU-4I | 151.6 | 64.6% | 35.4% | - |
SPU-2I | 347.5 | 56.0% | 32.0% | 12.0% |
TH (°C) | TS (°C) | Tg (°C) | TU (°C) | TA (°C) | Urethane (%) | Acrylate (%) | |
---|---|---|---|---|---|---|---|
SPU-6I | - | 369.6 | −61.7 | - | - | - | - |
SPU-4I | - | 371 | −61.5 | - | - | - | - |
SPU-2I | - | 349 | −58.4 | - | - | - | - |
IPN SPU-6I | - | - | −19.7 | 279.9 | 397.8 | 32.1 | 64.9 |
IPN SPU-4I | - | - | −17.5 | 282.4 | 397.7 | 32.6 | 64.1 |
IPN SPU-2I | - | - | −12 | 285.8 | 394.3 | 32.1 | 64.4 |
Sample | Ball Tack | Peel Strength (g/inch) | Holding Time (25 °C × 1 kg × 1 h) | Holding Time (120 °C × 1 kg × 1 h) |
---|---|---|---|---|
IPN SPU-6I | #4 | 2190 | Non-creep | 6 min |
IPN SPU-4I | #4 | 2070 | Non-creep | 8 min |
IPN SPU-2I | #4 | 2120 | Non-creep | 8 min |
Sample | N-H Peak Area | Relative Absorbance of C=O Groups in Polyurethane | ||
---|---|---|---|---|
Free C=O (AF, 1720 cm−1) | Disordered H-Bond C=O (AD, 1700 cm−1) | Ordered H-Bond C=O (AO, 1685 cm−1) | ||
HPU-H | 426.6 | 63.0% | 20.7% | 16.3% |
HPU-I | 443.5 | 71.1% | 21.9% | 8.0% |
HPU-HM | 486.3 | 64.1% | 21.4% | 14.5% |
Sample | TH (°C) | TS (°C) | Tg (°C) | TU (°C) | TA (°C) | Urethane (%) | Acrylate (%) |
---|---|---|---|---|---|---|---|
HPU-H | 281.6 | 368.0 | −55.8 | - | - | - | - |
HPU-I | 286.0 | 369.0 | −52.7 | - | - | - | - |
HPU-HM | 283.0 | 385.0 | −50.3 | - | - | - | - |
IPN HPU-H | - | - | −16.0 | 290.1 | 393.9 | 33.1 | 62.7 |
IPN HPU-I | - | - | −7.8 | 286.5 | 392.5 | 32.0 | 61.0 |
IPN HPU-HM | - | - | −5.0 | 286.0 | 393.9 | 32.6 | 64.0 |
Sample | Ball Tack | Peel Strength (g/inch) | Holding Time (25 °C × 1 kg × 1 h) | Holding Time (120 °C × 1 kg × 1 h) |
---|---|---|---|---|
IPN HPU-H | #4 | 2030 | Non-creep | 51 min |
IPN HPU-I | #4 | 1990 | Non-creep | 11 min |
IPN HPU-HM | #4 | 1750 | Non-creep | Non-creep |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.H.; Lee, D.Y.; Yoon, S.H.; Kim, S.H.; Han, M.S.; Jeon, S.; Kim, Y.; Lim, Y.K.; Hwang, D.-H.; Jung, S.-H.; et al. Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers. Polymers 2022, 14, 3963. https://doi.org/10.3390/polym14193963
Park KH, Lee DY, Yoon SH, Kim SH, Han MS, Jeon S, Kim Y, Lim YK, Hwang D-H, Jung S-H, et al. Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers. Polymers. 2022; 14(19):3963. https://doi.org/10.3390/polym14193963
Chicago/Turabian StylePark, Kwang Hun, Dong Yeob Lee, Sung Ha Yoon, Seong Hun Kim, Min Su Han, Seungju Jeon, Yejin Kim, Yong Kwan Lim, Do-Hoon Hwang, Seo-Hyun Jung, and et al. 2022. "Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers" Polymers 14, no. 19: 3963. https://doi.org/10.3390/polym14193963
APA StylePark, K. H., Lee, D. Y., Yoon, S. H., Kim, S. H., Han, M. S., Jeon, S., Kim, Y., Lim, Y. K., Hwang, D. -H., Jung, S. -H., & Lim, B. (2022). Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers. Polymers, 14(19), 3963. https://doi.org/10.3390/polym14193963