Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution
Abstract
:1. Introduction
2. Method of Numerical Simulation of OSA Polymerization
3. Results
3.1. Dependence of the Surface Tension σsw, Rate of Molecular Deposition Rmd, and Zeldovich Factor Z on the Temperature and pH
3.2. Results of the Numerical Simulation at Different Temperatures and pH: Average Particle Size, Induction Period, and the Particle Size Distribution
3.3. Simulation of OSA Polymerization at Different Ionic Strengths
3.4. Simulation of OSA Polymerization under Time-Variable Temperatures
3.5. Comparison of the Experimental Data with Results of the Numerical Simulation
4. Simulation the Particle Size Distribution in Hydrothermal Sol Production Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, L.; Duwal, S.; Lane, J.M.D.; Ao, T.; Stoltzfus, B.; Knudson, M.; Park, C.; Chow, P.; Xiao, Y.; Fan, H.; et al. Pressure Induced Assembly and Coalescence of Lead Chalcogenide Nanocrystals. J. Am. Chem. Soc. 2021, 143, 2688–2693. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.; Rajesh, Y.; More, M. Synthesis and Characterization of SiO2 Nanoparticles via Sol-gel Method for Industrial Applications. Mater. Today Proc. 2015, 2, 3575–3579. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Potapov, V.; Fediuk, R.; Gorev, D. Obtaining sols, gels and mesoporous nanopowders of hydrothermal nanosilica. J. Sol-Gel Sci. Technol. 2020, 94, 681–694. [Google Scholar] [CrossRef]
- Potapov, V.; Fediuk, R.; Gorev, D. Hydrothermal SiO2 Nanopowders: Obtaining Them and Their Characteristics. Nanomaterials 2020, 10, 624. [Google Scholar] [CrossRef]
- Potapov, V.; Fediuk, R.; Gorev, D. Membrane concentration of hydrothermal SiO2 nanoparticles. Sep. Purif. Technol. 2020, 251, 117290. [Google Scholar] [CrossRef]
- Potapov, V.; Efimenko, Y.; Fediuk, R.; Gorev, D. Effect of hydrothermal nanosilica on the performances of cement concrete. Constr. Build. Mater. 2020, 269, 121307. [Google Scholar] [CrossRef]
- Iler, R.K. Polymerization of polycilicic acid derived from 3.3 ratio sodium silicate. J. Phys. Chem. 1953, 57, 604–607. [Google Scholar] [CrossRef]
- Alexander, G.B. The Reaction of Low Molecular Weight Silicic Acids with Molybdic Acid. J. Am. Chem. Soc. 1953, 75, 5655–5657. [Google Scholar] [CrossRef]
- Alexander, G.B. The Polymerization of Monosilicic Acid. J. Am. Chem. Soc. 1954, 76, 2094–2096. [Google Scholar] [CrossRef]
- Schwarz, R.; Knauff, K.G. Zur Kenntnis der Kieselsäuren. X. Über Alkoxysilane und Oligokieselsäuren. Z. Für Anorg. Und Allg. Chem. 1954, 275, 176–192. [Google Scholar] [CrossRef]
- Bechtold, M.F. Polymerization and Properties of Dilute Aqueous Silicic Acid from Cation Exchange. J. Phys. Chem. 1955, 59, 532–541. [Google Scholar] [CrossRef]
- Goto, K.J. States of silica in aqueous solutions. II. Chem. Soc. Jap. Pure Chem. Sect. 1955, 76, 1364–1366. [Google Scholar]
- Hoebbel, D.; Wieker, W. Über Kondensationsreaktionen der Monokieselsäure. Z. Für Anorg. Und Allg. Chem. 1973, 400, 148–160. [Google Scholar] [CrossRef]
- Hoebbel, D.; Wieker, W. Über die dünnschichtchromatographische Trennung trimethylsilylierter Kieselsäuren. Z. Anorg. Allgem. Chem. 1974, 405, 163–166. [Google Scholar] [CrossRef]
- Hoebbel, D.; Wieker, W.; Hoebbel, D.; Wieker, W. 29Si-NMR-Spektroskopie an Silicatlösungen. IV. Untersuchungen zur Kondensation der Monokieselsäure. Z. Für Anorg. Und Allg. Chem. 1977, 428, 43–52. [Google Scholar]
- Baumann, H. Polymerization and depolymerization de kieselsaure unter verschiedenen begingungen. Kolloid-Z. 1959, 162, 28–35. [Google Scholar] [CrossRef]
- Ginzburg, F.L.; Sheidina, L.D. Radiochemistry. 1973, 15, 410. Available online: http://sciencejournals.ru/journal/radkhim/ (accessed on 18 September 2022).
- Goto, K. Effect of pH on Polymerization of Silicic Acid. J. Phys. Chem. 1956, 60, 1007–1008. [Google Scholar] [CrossRef]
- Okkerse, C. Submicroporous and Macroporous Silica. Ph.D. Thesis, Delftsche Uitgevers Maatschappif N.V., Delft, The Netherlands, 1961. [Google Scholar]
- Richardson, E.; Waddams, J.A. Use of the silico-molybdate reaction to investigate the polymerization of low molecular weight silicic acids in dilute solutions. Res. Corresp. 1954, 7, 43. [Google Scholar]
- Tarutani, T. Chromatographic behavior of silicic acid on sephadex columns. J. Chromatogr. 1970, 50, 523–526. [Google Scholar] [CrossRef]
- Makrides, A.K.; Turner, M.; Slaughter, J. Condensation of silica from super-saturated silicic acid solutions. J. Colloid Interface Sci. 1980, 73, 345–367. [Google Scholar] [CrossRef]
- Frolov, Y.G.; Shabanova, N.A.; Popov, V.V. Influence of temperature and pH on polycondensation of silicic acid in an aqueous medium. Colloid. J. 1983, 45, 179–182. [Google Scholar]
- Frolov, Y.G.; Shabanova, N.A.; Popov, V.V. Polycondensation silicic acid in an aqueous medium. Influence of the concentration of silicic acid. Colloid. J. 1983, 45, 382–386. [Google Scholar]
- Rothbaum, H.; Rohde, A. Kinetics of silica polymerization and deposition from dilute solutions between 5 and 180 °C. J. Colloid Interface Sci. 1979, 71, 533–559. [Google Scholar] [CrossRef]
- Coudurier, M.; Baudru, R.; Donnet, J.B. Etude de la polycondensation de l’acide disilique. Bull. Soc. Chem. Fr. 1971, 9, 3154–3160. [Google Scholar]
- Fleming, B.A. Kinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions. J. Colloid Interface Sci. 1986, 110, 40–64. [Google Scholar] [CrossRef]
- Weres, O.; Yee, A.; Tsao, L. Kinetics of silica polymerization. J. Colloid Interface Sci. 1981, 84, 379–402. [Google Scholar] [CrossRef]
- Conrad, C.F.; Icopini, G.A.; Yasuhara, H.; Bandstra, J.Z.; Brantley, S.L.; Heaney, P.J. Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochim. Et Cosmochim. Acta 2007, 71, 531–542. [Google Scholar] [CrossRef]
- Garofalini, S.H.; Martin, G. Molecular Simulations of the Polymerization of Silicic Acid Molecules and Network Formation. J. Phys. Chem. 1994, 98, 1311–1316. [Google Scholar] [CrossRef]
- Rao, N.Z.; Gelb, L.D. Molecular Dynamics Simulations of the Polymerization of Aqueous Silicic Acid and Analysis of the Effects of Concentration on Silica Polymorph Distributions, Growth Mechanisms, and Reaction Kinetics. J. Phys. Chem. B 2004, 108, 12418–12428. [Google Scholar] [CrossRef]
- Greenberg, S.A. Polymerization of silicic acid in alkaline solutions a kinetics study. J. Polym. Sci. 1958, 27, 523–527. [Google Scholar] [CrossRef]
- Potapov, V.V.; Serdan, A.A.; Kashpura, V.N.; Gorbach, V.A.; Tyurina, N.A.; Zubakha, S.V. Polycondensation of orthosilicic acid in hydrothermal solutions at different temperatures, pH values, and ionic strengths. Glas. Phys. Chem. 2007, 33, 44–49. [Google Scholar] [CrossRef]
- Potapov, V.V.; Cerdan, A.A.; Kashutina, I.A. Numerical Simulation of the Polycondensation of Orthosilicic Acid and of the Formation of Silica Particles in Hydrothermal Solutions. J. Volcanol. Seism. 2019, 13, 216–225. [Google Scholar] [CrossRef]
- Crerar, D.A.; Anderson, G.M. Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chem. Geol. 1971, 8, 107–122. [Google Scholar] [CrossRef]
- Marshall, W.L. Amorphous Silica Solubilities: I. Behaviour in Aqueous Sodium Nitrate Solutions: 25–300 °C, 0–6 Molal. Geochim. Cosmochim. Acta 1980, 44, 907–913. [Google Scholar] [CrossRef]
- Ohsawa, S.; Kawamura, T.; Nakamatsu, N.; Yusa, Y. Geothermal blue water colored by colloidal silica. In Proceedings of the World Geothermal Congress, Kyushu, Tohoku, Japan, 28 May–10 June 2000; pp. 663–668. [Google Scholar]
- Crerar, D.A.; Axtmann, E.V.; Axtmann, R.C. Growth and ripening of silica polymers in aqueous solutions. Geochim. Cosmochim. Acta 1981, 45, 1259–1266. [Google Scholar] [CrossRef]
Component | Concentration | |
---|---|---|
mg/L | mg equ/L | |
Na+ | 239.4 | 10.413 |
K+ | 42.0 | 1.074 |
Ca2+ | 1.6 | 0.0798 |
Mg2+ | 0.72 | 0.0592 |
Fe2, 3+ | <0.1 | <0.0053 |
Al3+ | 0.27 | 0.033 |
NH4+ | 1.1 | 0.0609 |
Li+ | 0.71 | 0.102 |
Total cation concentration | 285.9 | 11.827 |
Cl− | 198.5 | 5.591 |
HCO3− | 81.0 | 1.327 |
CO32− | 19.9 | 0.663 |
SO42− | 192.1 | 3.9995 |
HS− | 4.95 | 0.15 |
H2S0 | 5.92 | - |
F− | n/d | n/d |
Total anion concentration | 496.5 | 11.73 |
H3BO3 | 106.9 | nc |
(H4SiO4)t | 1190 | nc |
(H4SiO4)s | 222 | nc |
Mineralization Mh | 1638.9 | nc |
pH | f(pH) | pH | f(pH) | pH | f(pH) |
---|---|---|---|---|---|
4.0 | 0.00025 | 5.9 | 0.017 | 7.5 | 0.21 |
4.5 | 0.00079 | 6.0 | 0.022 | 8.0 | 0.32 |
5.0 | 0.0024 | 6.5 | 0.055 | 8.5 | 0.44 |
5.5 | 0.0075 | 7.0 | 0.119 | 8.7 | 0.49 |
pH | i (pH) |
---|---|
6.0 | 0.01 |
6.5 | 0.03 |
7.0 | 0.07 |
7.5 | 0.15 |
8.0 | 0.29 |
8.5 | 0.48 |
8.7 | 0.56 |
t, °C | pH | |||||
4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | |
20 | 3.8∙10−2 | 3.8∙10−2 | 3.8∙10−2 | 3.8∙10−2 | 3.8∙10−2 | 3.9∙10−2 |
50 | 2.1∙10−2 | 2.1∙10−2 | 2.1∙10−2 | 2.1∙10−2 | 2.2∙10−2 | 2.2∙10−2 |
100 | 5.8∙10−3 | - | 5.8∙10−3 | 5.8∙10−3 | 6.0∙10−3 | 6.1∙10−3 |
130 | 1.4∙10−3 | 1.3∙10−3 | 1.3∙10−3 | 1.3∙10−3 | 1.4∙10−3 | 1.4∙10−3 |
t, °C | pH | |||||
7.0 | 7.5 | 8.0 | 8.5 | 8.7 | 8.99 | |
20 | 4.2∙10−2 | 4.8∙10−2 | 6.4∙10−2 | 1.1∙10−1 | 1.5∙10−1 | 3.3∙10−1 |
50 | 2.4∙10−2 | 2.8∙10−2 | 4∙10−2 | 7.6∙10−2 | 1.2∙10−1 | 3.5∙10−1 |
100 | 6.7∙10−3 | 8.2∙10−3 | 1.2∙10−2 | 3.1∙10−2 | 6.2∙10−2 | 8.6∙10−3 |
130 | 1.6∙10−3 | 2∙10−3 | 3.3∙10−3 | 1∙10−2 | 2.6∙10−4 | - |
pH | t, °C | |||||
---|---|---|---|---|---|---|
20 | 40 | 50 | 60 | 80 | 100 | |
4 | 5.28 | 19.24 | 48.06 | 156.55 | 6342.1 | - |
5 | 5.29 | 19.05 | 47.30 | 153.15 | 5858.7 | - |
6 | 2.98 | 16.82 | 40.69 | 128.01 | 4684.7 | - |
7 | 2.97 | 7.66 | 15.28 | 38.17 | 701.4 | - |
8 | 0.98 | 1.21 | 1.50 | 1.77 | 3.48 | 18.7 |
8.5 | 0.64 | 0.73 | 0.78 | 0.84 | 1.01 | 1.26 |
CS, mg/kg | t, °C | |||
20 | 40 | 50 | 60 | |
300 | 93.5 | - | - | - |
350 | 12.4 | 1019.9 | - | - |
400 | 4.35 | 49.1 | 586.3 | - |
500 | 1.79 | 4.08 | 8.96 | 32.7 |
600 | 1.246 | 1.84 | - | 3.80 |
700 | 0.98 | 1.21 | - | 1.77 |
800 | 0.87 | 1.05 | - | 1.31 |
1000 | 0.73 | 0.83 | - | 0.95 |
CS, mg/kg | t, °C | |||
70 | 80 | 85 | 90 | |
300 | - | - | - | - |
350 | - | - | - | - |
400 | - | - | - | - |
500 | - | - | - | - |
600 | 7.56 | 24.14 | 56.14 | 169.8 |
700 | - | 3.48 | - | 6.49 |
800 | - | 1.81 | - | 2.30 |
1000 | - | 1.10 | - | 1.21 |
Temperature, °C | pH | Initial OSA Concentration Cs, mg/kg | thom. min | thetg, min | thom/thetg |
---|---|---|---|---|---|
20 | 5 | 700 | 80,385.3 | 4,369,195 | 0.018398 |
20 | 6 | 700 | 8255.45 | 454,617.5 | 0.018159 |
20 | 7 | 700 | 749.63 | 81,119.24 | 0.009241 |
20 | 8 | 700 | 50.20 | 5133.77 | 0.009779 |
50 | 5 | 700 | 118,281.1 | 3,027,579 | 0.039068 |
50 | 6 | 700 | 11,123.75 | 250,812.4 | 0.044351 |
50 | 7 | 700 | 715.87 | 20,328.97 | 0.035215 |
50 | 8 | 700 | 13.47 | 776.68 | 0.01735 |
80 | 5 | 700 | 4,352,938 | 7.15·107 | 0.0608 |
80 | 6 | 700 | 373,867.6 | 5,574,710 | 0.067065 |
80 | 7 | 700 | 10,519.41 | 143,413.7 | 0.07335 |
80 | 8 | 700 | 19.635 | 328.12 | 0.05984 |
100 | 5 | 700 | 7.07·109 | 5.32·1010 | 0.133 |
100 | 6 | 700 | 4.89·108 | 3.53·109 | 0.139 |
100 | 7 | 700 | 32,828.60 | 2.19·107 | 0.15 |
100 | 8 | 700 | 116.61 | 638.40 | 0.182 |
120 | 5 | 700 | 1.08·1019 | 4.94·1019 | 0.219 |
120 | 6 | 700 | 3.93·1017 | 1.78·1018 | 0.22 |
120 | 7 | 700 | 4.71·1013 | 1.87·1014 | 0.252 |
120 | 8 | 700 | 26,324.92 | 73,435.34 | 0.3584 |
IS, mol/kg | Ra, nm | IS, mol/kg | Ra, nm | IS, mol/kg | Ra, nm |
---|---|---|---|---|---|
0.014 | 0.99 | 0.4 | 1.048 | 1.4 | 1.042 |
0.07 | 1.029 | 0.8 | 1.049 | 7.1 | 0.9 |
0.14 | 1.036 | 1.0 | 1.047 | 10.6 | 0.79 |
0.28 | 1.044 | 102 | 1.045 | 14.2 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potapov, V.V.; Cerdan, A.A.; Gorev, D.S. Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution. Polymers 2022, 14, 4044. https://doi.org/10.3390/polym14194044
Potapov VV, Cerdan AA, Gorev DS. Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution. Polymers. 2022; 14(19):4044. https://doi.org/10.3390/polym14194044
Chicago/Turabian StylePotapov, Vadim V., Angel A. Cerdan, and Denis S. Gorev. 2022. "Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution" Polymers 14, no. 19: 4044. https://doi.org/10.3390/polym14194044
APA StylePotapov, V. V., Cerdan, A. A., & Gorev, D. S. (2022). Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution. Polymers, 14(19), 4044. https://doi.org/10.3390/polym14194044