Polyimide Layers with High Refractivity and Surface Wettability Adapted for Lowering Optical Losses in Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Optical Analysis and Related Losses
3.1.1. Transparency and Absorption Edges
3.1.2. Refraction and TIR-Induced Losses
3.2. Evaluation of Coefficient of Thermal Expansion
3.3. Surface Treatment of the PI Covers
3.3.1. Influence on the Illuminance
3.3.2. Influence of the Surface Treatment on the Morphology
3.3.3. Influence of the Surface Treatment on the Wettability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadasivuni, K.K.; Deshmukh, K.; Ahipa, T.N.; Muzaffar, A.; Ahamed, M.B.; Pasha, S.K.K.; Al-Maadeed, M.A.-A. Flexible, biodegradable and recyclable solar cells: A review. J. Mater. Sci. Mater. Electron. 2019, 30, 951–974. [Google Scholar] [CrossRef]
- Asim, N.; Sopian, K.; Ahmadi, S.; Saeedfar, K.; Alghoul, M.A.; Saadatian, O.; Zaidi, S.H. A review on the role of materials science in solar cells. Renew. Sustain. Energy Rev. 2012, 16, 5834–5847. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.-Y.; Lu, Z.-H. Review and perspective of materials for flexible solar cells. Mater. Reports Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
- Feenstra, J.; Van Leest, R.H.; Smeenk, N.J.; Oomen, G.; Bongers, E.; Mulder, P.; Vlieg, E.; Schermer, J.J. Flexible shielding layers for solar cells in space applications. J. Appl. Polym. Sci. 2016, 133, 1–11. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.-H.; Kang, T.E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T.-S.; et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547. [Google Scholar] [CrossRef]
- Yang, W.; Luo, Z.; Sun, R.; Guo, J.; Wang, T.; Wu, Y.; Wang, W.; Guo, J.; Wu, Q.; Shi, M.; et al. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 2020, 11, 1218. [Google Scholar] [CrossRef]
- Hou, G.; García, I.; Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 2021, 217, 29–39. [Google Scholar] [CrossRef]
- Nayshevsky, I.; Xu, Q.F.; Barahman, G.; Lyons, A.M. Fluoropolymer coatings for solar cover glass: Anti-soiling mechanisms in the presence of dew. Sol. Energy Mater. Sol. Cells 2020, 206, 110281. [Google Scholar] [CrossRef]
- Sanchez-Friera, P.; Montiel, D.; Gil, J.F.; Montanez, J.A.; Alonso, J. Daily Power Output Increase of Over 3% with the Use of Structured Glass in Monocrystalline Silicon PV Modules. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 2156–2159. [Google Scholar]
- Sulaiman, S.A.; Singh, A.K.; Mokhtar, M.M.M.; Bou-Rabee, M.A. Influence of Dirt Accumulation on Performance of PV Panels. Energy Procedia 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Epure, E.-L.; Stoica, I.; Albu, R.M.; Hulubei, C.; Barzic, A.I. New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials 2021, 11, 3107. [Google Scholar] [CrossRef]
- Sava, I.; Stoica, I.; Topala, I.; Mihaila, I.; Barzic, A.I. Photodesign and fabrication of surface relief gratings on films of polyimide-based supramolecular systems obtained using host-guest strategy. Polymer 2022, 249, 124829. [Google Scholar] [CrossRef]
- Yusoff, A.R.M.M.; Syahrul, M.N.; Henkel, K. Film adhesion in amorphous silicon solar cells. Bull. Mater. Sci. 2007, 30, 329–331. [Google Scholar] [CrossRef]
- Aydin, E.; Sankir, N.D. Photovoltaic performance and impedance spectroscopy analysis of CuInS2 thin film solar cells deposited on polyimide foil via spray pyrolysis. Int. J. Electrochem. Sci. 2017, 12, 9626–9639. [Google Scholar] [CrossRef]
- Dayneko, S.; Tameev, A.; Tedoradze, M.; Martynov, I.; Artemyev, M.; Nabiev, I.; Chistyakov, A. Hybrid heterostructures based on aromatic polyimide and semiconductor CdSe quantum dots for photovoltaic applications. Appl. Phys. Lett. 2013, 103, 063302. [Google Scholar] [CrossRef]
- Niu, H.; Wang, C.; Bai, X.; Huang, Y. New perylene polyimides containing p-n diblocks for sensitization in TiO2 solar cells. Polym. Adv. Technol. 2004, 15, 701–707. [Google Scholar] [CrossRef]
- Hulubei, C.; Albu, R.M.; Lisa, G.; Nicolescu, A.; Hamciuc, E.; Hamciuc, C.; Barzic, A.I. Antagonistic effects in structural design of sulfur-based polyimides as shielding layers for solar cells. Sol. Energy Mater. Sol. Cells 2019, 193, 219–230. [Google Scholar] [CrossRef]
- Yang, C.P.; Chen, Y.P.; Woo, E.M.; Li, S.H. Light-color soluble polyimides based on α,α′-bis[4-(4- amino-2-trifluoromethylphenoxy)phenyl]-1,3-diisopropylbenzene and aromatic dianhydrides. Polym. J. 2006, 38, 457–470. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wu, D. Synthetic strategies for highly transparent and colorless polyimide film. J. Appl. Polym. Sci. 2022, 139, e52604. [Google Scholar] [CrossRef]
- Mathews, A.S.; Kim, I.; Ha, C. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol. Res. 2007, 15, 114–128. [Google Scholar] [CrossRef]
- Hu, S.; Shabani, F.; Liu, B.; Zhang, L.; Guo, M.; Lu, G.; Zhou, Z.; Wang, J.; Huang, J.C.; Min, Y.; et al. High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano 2022, 16, 10840–10851. [Google Scholar] [CrossRef]
- Choi, W.-S.; Park, H.J.; Park, S.-H.; Jeong, T. Flexible InGaN LEDs on a Polyimide Substrate Fabricated Using a Simple Direct-Transfer Method. IEEE Photonics Technol. Lett. 2014, 26, 2115–2117. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, Y.; Tian, H.; He, X.; Hu, A.; Guo, X. Fabrication of flexible AlGaInP LED. J. Semicond. 2020, 41, 032302. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Liu, B.; Qiu, Y. Emergence of Flexible White Organic Light-Emitting Diodes. Polymers 2019, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Barzic, A.I. Novel aspects derived from the influence of dispersion properties of poly(4-vinylpyridine)/aluminum nitride nanocomposite encapsulants on light-extraction efficiency of light emitting diodes. Polym. Adv. Technol. 2022, 33, 1116–1125. [Google Scholar] [CrossRef]
- Barzic, A.I.; Albu, R.M.; Hulubei, C. Polyimides Containing Chalcogen Atoms in Solution Phase: Viscoelasticity and Interferometry Analyses. Rev. Roum. Chim. 2021, 66, 361–366. [Google Scholar] [CrossRef]
- Barzic, A.I.; Albu, R.M.; Stoica, I.; Varganici, C.D.; Hulubei, C. Polyimides containing cycloaliphatic units and chalcogen atoms as alternative shielding coatings for solar cells. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Stoica, I.; Albu, R.M.; Hulubei, C.; Astanei, D.G.; Burlica, R.; Mersal, G.A.M.; Seaf Elnasr, T.A.; Barzic, A.I.; Elnaggar, A.Y. A New Texturing Approach of a Polyimide Shielding Cover for Enhanced Light Propagation in Photovoltaic Devices. Nanomaterials 2022, 12, 3249. [Google Scholar] [CrossRef]
- Green, C.P.; Lioe, H.; Cleveland, J.P.; Proksch, R.; Mulvaney, P.; Sader, J.E. Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 2004, 75, 1988–1996. [Google Scholar] [CrossRef]
- ISO. ISO 25178-2:2012; Geometrical Product Specifications (GPS)—Surface texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. Available online: https://www.iso.org/standard/42785.html (accessed on 23 July 2021).
- Lee, S.J.; Choi, M.Y.; Kwac, L.K.; Kim, H.G.; Chang, J.-H. Comparison of Properties of Colorless and Transparent Polyimide Nanocomposites Containing Chemically Modified Nanofillers: Functionalized-Graphene and Organoclay. Polymers 2022, 14, 2469. [Google Scholar] [CrossRef]
- Chang, J.-H. Equibiaxially stretchable colorless and transparent polyimides for flexible display substrates. Rev. Adv. Mater. Sci. 2020, 59, 1–9. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non. Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Ayik, C.; Studenyak, I.; Kranjec, M.; Kurik, M. Urbach Rule in Solid State Physics. Int. J. Opt. Appl. 2014, 4, 76–83. [Google Scholar] [CrossRef]
- Jarzabek, B.; Schab-Balcerzak, E.; Chamenko, T.; Sek, D.; Cisowski, J.; Volozhin, A. Optical properties of new aliphatic–aromatic co-polyimides. J. Non. Cryst. Solids 2002, 299–302, 1057–1061. [Google Scholar] [CrossRef]
- Rosenberg, A.; Lee, S.H.; Shirk, J.S.; Beadie, G. Opto-thermal characteristics of amorphous polyimides for optical applications. Opt. Mater. Express 2018, 8, 2159. [Google Scholar] [CrossRef]
- Jain, V.K.; Kulshreshtha, A.P. Indium-Tin-Oxide transparent conducting coatings on silicon solar cells and their “figure of merit”. Sol. Energy Mater. 1981, 4, 151–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Shim, J.W.; Fuentes-Hernandez, C.; Sharma, A.; Knauer, K.A.; Giordano, A.J.; Marder, S.R.; Kippelen, B. Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure. Phys. Chem. Chem. Phys. 2012, 14, 12014. [Google Scholar] [CrossRef]
- Bicerano, J. Prediction of Polymers, 3rd ed.; Revised and Expanded; Marcel Dekker: New York, NY, USA, 2002; ISBN 0824708210. [Google Scholar]
- Numata, S.; Oohara, S.; Imaizumi, J.; Kinjo, N. Thermal Expansion Behavior of Various Aromatic Polyimides. Polym. J. 1985, 17, 981–983. [Google Scholar] [CrossRef]
- Barzic, A.I.; Stoica, I.; Popovici, D.; Vlad, S.; Cozan, V.; Hulubei, C. An insight on the effect of rubbing textile fiber on morphology of some semi-alicyclic polyimides for liquid crystal orientation. Polym. Bull. 2012, 70, 1553–1574. [Google Scholar] [CrossRef]
- Stoica, I.; Barzic, A.I.; Hulubei, C. Fabrication of nanochannels on polyimide films using dynamic plowing lithography. Appl. Surf. Sci. 2017, 426, 307–314. [Google Scholar] [CrossRef]
- Popovici, D.; Barzic, A.I.; Stoica, I.; Butnaru, M.; Ioanid, G.E.; Vlad, S.; Hulubei, C.; Bruma, M. Plasma modification of surface wettability and morphology for optimization of the interactions involved in blood constituents spreading on some novel copolyimide films. Plasma Chem. Plasma Process. 2012, 32, 781–799. [Google Scholar] [CrossRef]
- Quan, Y.-Y.; Zhang, L.-Z.; Qi, R.-H.; Cai, R.-R. Self-cleaning of Surfaces: The Role of Surface Wettability and Dust Types. Sci. Rep. 2016, 6, 38239. [Google Scholar] [CrossRef] [PubMed]
- Lo, T.-Y.; Huang, Y.-C.; Hsiao, Y.-N.; Chao, C.-G.; Whang, W.-T. Preparation of superhydrophobic polyimide films modified with organosilicasol as effective anticorrosion coatings. Surf. Coat. Technol. 2014, 258, 310–319. [Google Scholar] [CrossRef]
- Vüllers, F.; Gomard, G.; Preinfalk, J.B.; Klampaftis, E.; Worgull, M.; Richards, B.; Hölscher, H.; Kavalenka, M.N. Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications. Small 2016, 12, 6144–6152. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Huang, Y.; Wang, L.; Vüllers, F.; Kavalenka, M.N.; Hölscher, H.; Dottermusch, S.; Richards, B.S.; Klampaftis, E. Photocurrent enhancement for ultrathin crystalline silicon solar cells via a bioinspired polymeric nanofur film with high forward scattering. Sol. Energy Mater. Sol. Cells 2018, 186, 105–110. [Google Scholar] [CrossRef]
- Roslizar, A.; Dottermusch, S.; Vüllers, F.; Kavalenka, M.N.; Guttmann, M.; Schneider, M.; Paetzold, U.W.; Hölscher, H.; Richards, B.S.; Klampaftis, E. Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Sol. Energy Mater. Sol. Cells 2019, 189, 188–196. [Google Scholar] [CrossRef]
Sample | Tg, K * | CTE, K−1 |
---|---|---|
PI-1 | 615.200 | 16.33∙10−5 |
PI-2 | 480.140 | 20.64∙10−5 |
PI-3 | 477.250 | 20.76∙10−5 |
PI-4 | 513.730 | 19.37∙10−5 |
Sample | Texture Parameters | ||
---|---|---|---|
Root Mean Square Roughness, Sq (nm) | Surface Area Ratio, Sdr (%) | Surface Bearing Index, Sbi | |
PI-1 | 2.3 | 0.081 | 0.032 |
PI-1(P) | 10.4 | 0.326 | 0.084 |
PI-1(P+S) | 64.2 | 3.493 | 0.413 |
PI-4 | 5.9 | 0.679 | 0.092 |
PI-4(P) | 7.5 | 0.260 | 0.117 |
PI-4(P+S) | 144.1 | 3.398 | 0.519 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzic, A.I.; Albu, R.M.; Hulubei, C.; Mahmoud, S.F.; Abu Ali, O.A.; El-Bahy, Z.M.; Stoica, I. Polyimide Layers with High Refractivity and Surface Wettability Adapted for Lowering Optical Losses in Solar Cells. Polymers 2022, 14, 4049. https://doi.org/10.3390/polym14194049
Barzic AI, Albu RM, Hulubei C, Mahmoud SF, Abu Ali OA, El-Bahy ZM, Stoica I. Polyimide Layers with High Refractivity and Surface Wettability Adapted for Lowering Optical Losses in Solar Cells. Polymers. 2022; 14(19):4049. https://doi.org/10.3390/polym14194049
Chicago/Turabian StyleBarzic, Andreea Irina, Raluca Marinica Albu, Camelia Hulubei, Samy F. Mahmoud, Ola A. Abu Ali, Zeinhom M. El-Bahy, and Iuliana Stoica. 2022. "Polyimide Layers with High Refractivity and Surface Wettability Adapted for Lowering Optical Losses in Solar Cells" Polymers 14, no. 19: 4049. https://doi.org/10.3390/polym14194049
APA StyleBarzic, A. I., Albu, R. M., Hulubei, C., Mahmoud, S. F., Abu Ali, O. A., El-Bahy, Z. M., & Stoica, I. (2022). Polyimide Layers with High Refractivity and Surface Wettability Adapted for Lowering Optical Losses in Solar Cells. Polymers, 14(19), 4049. https://doi.org/10.3390/polym14194049