Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double−Shell Microcapsules and Its Application in Flame Retardant Polyamide6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Characterization
2.3. Preparation of Mic−DP
2.4. Preparation of PA6 Samples
3. Results and Discussion
3.1. Characterization of RP and Mic−DP
3.2. LOI and UL−94 Vertical Burning of PA6 Samples
3.3. TG and DTG of PA6 Samples
3.4. Cone Calorimeter Data of PA6 Samples
3.5. Residual Char from Cone Calorimeter Tests
3.6. Morphologies of PA6 Composites at Different Temperatures
3.7. Pyrolysis–Gas Chromatography–Mass Spectrometry
3.8. Flame−Retardant Mechanism
3.9. Mechanical Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghanta, T.S.; Aparna, S.; Verma, N.; Purnima, D. Review on nano−and microfiller−based polyamide 6 hybrid composite: Effect on mechanical properties and morphology. Polym. Eng. Sci. 2020, 60, 1717–1759. [Google Scholar] [CrossRef]
- Abdelwahab, M.; Codou, A.; Anstey, A.; Mohanty, A.K.; Misra, M. Studies on the dimensional stability and mechanical properties of nanobiocomposites from polyamide 6−filled with biocarbon and nanoclay hybrid systems. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105695. [Google Scholar] [CrossRef]
- Fan, S.; Peng, B.; Yuan, R.; Wu, D.; Wang, X.; Yu, J.; Li, F. A novel Schiff base−containing branched polysiloxane as a self−crosslinking flame retardant for PA6 with low heat release and excellent anti−dripping performance. Compos. Part B Eng. 2020, 183, 107684. [Google Scholar] [CrossRef]
- Wang, F.; Shi, W.; Mai, Y.; Liao, B. Effect of Thermal Conductive Fillers on the Flame Retardancy, Thermal Conductivity, and Thermal Behavior of Flame−Retardant and Thermal Conductive Polyamide 6. Materials 2019, 12, 4114. [Google Scholar] [CrossRef]
- Sun, J.H.; Qian, L.J.; Li, J. Flame retardancy and mechanical properties of polyamide 6 modified by multiple reactions with furan−phosphamide. Polymer 2020, 210, 122994. [Google Scholar] [CrossRef]
- Klinčić, D.; Lovaković, B.T.; Jagić, K.; Dvoršćak, M. Polybrominated diphenyl ethers and the multi−element profile of house dust in Croatia: Indoor sources, influencing factors of their accumulation and health risk assessment for humans. Sci. Total Environ. 2021, 800, 149430. [Google Scholar] [CrossRef]
- Akortia, E.; Olukunle, O.I.; Daso, A.P.; Okonkwo, J.O. Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dump site in the Greater Accra Region, Ghana: Implications for human exposure. Ecotoxicol. Environ. Saf. 2017, 137, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, M.; Saeed, A.; Al−Harahsheh, M.; Dlugogorski, B.Z. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212–259. [Google Scholar] [CrossRef]
- Ai, L.; Chen, S.; Yang, L.; Liu, P. Synergistic Flame Retardant Effect of Organic Boron Flame Retardant and Aluminum Hydroxide on Polyethylene. Fibers Polym. 2021, 22, 354–365. [Google Scholar] [CrossRef]
- Ai, L.; Yang, L.; Hu, J.; Chen, S.; Zeng, J.; Liu, P. Synergistic Flame Retardant Effect of Organic Phosphorus−Nitrogen and Inorganic Boron Flame Retardant on Polyethylene. Polym. Eng. Sci. 2020, 60, 414–422. [Google Scholar] [CrossRef]
- Ai, L.; Chen, S.; Zeng, J.; Liu, P.; Liu, W.; Pan, Y.; Liu, D. Synthesis and flame retardant properties of cyclophosphazene derivatives containing boron. Polym. Degrad. Stab. 2018, 155, 250–261. [Google Scholar] [CrossRef]
- Braun, U.; Schartel, B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol. Chem. Phys. 2004, 205, 2185–2196. [Google Scholar] [CrossRef]
- Dogan, M.; Unlu, S.M. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym. Degrad. Stab. 2014, 99, 12–17. [Google Scholar] [CrossRef]
- Wang, H.; Meng, X.; Wen, B.; Gao, X.; Zhang, S.; Yang, M. A simple route for the preparation of red phosphorus microcapsule with fine particle distribution. Mater. Lett. 2008, 62, 3745–3747. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q. Melamine cyanurate−microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym. Degrad. Stab. 2006, 91, 3103–3109. [Google Scholar] [CrossRef]
- Wu, Q.; Lü, J.; Qu, B. Preparation and characterization of microcapsulated red phosphorus and its flame−retardant mechanism in halogen−free flame retardant polyolefins. Polym. Int. 2003, 52, 1326–1331. [Google Scholar] [CrossRef]
- Cheng, C.; Yan, J.; Lu, Y.; Ma, W.; Li, C.; Du, S. Effect of chitosan/lignosulfonate microencapsulated red phosphorus on fire performance of epoxy resin. Thermochim. Acta 2021, 700, 178931. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio−based flame retardants: When nature meets fire protection. Mater. Sci. Eng. R Rep. 2017, 117, 1–25. [Google Scholar] [CrossRef]
- Hobbs, C.E. Recent Advances in Bio−Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers 2019, 11, 31. [Google Scholar] [CrossRef]
- Ding, S.; Liu, P.; Zhang, S.; Gao, C.; Wang, F.; Ding, Y.; Yang, M. Crosslinking of beta−cyclodextrin and combining with ammonium polyphosphate for flame−retardant polypropylene. J. Appl. Polym. Sci. 2020, 137, 12. [Google Scholar] [CrossRef]
- Wang, B.; Qian, X.; Shi, Y.; Yu, B.; Hong, N.; Song, L.; Hu, Y. Cyclodextrin microencapsulated ammonium polyphosphate: Preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos. Part B Eng. 2015, 69, 22–30. [Google Scholar] [CrossRef]
- Ding, S.; Liu, P.; Zhang, S.; Ding, Y.; Wang, F.; Gao, C.; Yang, M. Preparation and characterization of cyclodextrin microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene. J. Appl. Polym. Sci. 2020, 137, 49001. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, L.; Ai, L.; Feng, T.; Liu, P.; Xiong, Y. Preparation of melamine borate coated red phosphorus microcapsules and use of zinc borate as synergistic flame retardant in polyethylene. J. Vinyl Addit. Technol. 2022, 28, 591–603. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.J.; Han, J. Synthesis of Zinc Stannate Microcapsules for Preparation of Flame−Retardant PVC Composites. Polym. −Plast. Technol. Eng. 2018, 57, 1242–1253. [Google Scholar] [CrossRef]
- Ai, L.; Liu, J.; Chen, S.; Xu, Z.; Liu, P. Synthesis of melamine phenyl hypophosphite and its synergistic flame retardance with SiO2 on polypropylene. J. Therm. Anal. Calorim. 2022, 147, 6207–6217. [Google Scholar] [CrossRef]
- Lewin, M. Physical and Chemical Mechanisms of Flame Retarding of Polymers. In Fire Retardancy of Polymers; Woodhead Publishing: Cambridge, UK, 1998; pp. 3–32. [Google Scholar] [CrossRef]
Samples | PA6 (g) | RP (g) | Mic−DP (g) |
---|---|---|---|
PA6 | 100 | 0 | 0 |
PA6/13% RP | 87 | 13 | 0 |
PA6/7% Mic−DP | 93 | 0 | 7 |
PA6/10% Mic−DP | 90 | 0 | 10 |
PA6/13% Mic−DP | 87 | 0 | 13 |
Elemental Analysis Data (wt %) | ||||
---|---|---|---|---|
Sample | P | C | O | N |
RP | 66.10 | 33.06 | 0.84 | − |
Mic−MBP | 30.52 | 33.24 | 21.65 | 14.72 |
Mic−DP | 26.87 | 30.46 | 28.13 | 14.53 |
Moisture Absorption Ratio (%) | Inoxidizability (mgNaOH/g·h) | |
---|---|---|
RP | 6.19 | 12.64 |
Mic−DP | 0.74 | 0.40 |
Sample | LOI (%) | △LOI (%) a | UL−94 b |
---|---|---|---|
PA6 | 21.8 | −− | NR |
PA6/13%RP | 27.5 | 5.7 | V−2 |
PA6/7%Mic−DP | 26.5 | 4.7 | NR |
PA6/10%Mic−DP | 27.1 | 5.3 | V−2 |
PA6/13%Mic−DP | 27.8 | 6.0 | V−0 |
Sample | Tonset a (°C) | Tmax1 b (°C) | W800 °C c (%) |
---|---|---|---|
PA6 | 388.3 | 463.3 | 0.8 |
PA6/7%Mic−DP | 376.8 | 430.5 | 3.2 |
PA6/10%Mic−DP | 365.0 | 430.0 | 3.9 |
PA6/13%Mic−DP | 354.3 | 426.3 | 4.0 |
PA6/13%RP | 376.8 | 419.1 | 4.0 |
Sample | pk−HRR (kW/m2) | THR (MJ/m2) | av−EHC (MJ/kg) | Residual Char Yield (%) |
---|---|---|---|---|
PA6 | 869.5 | 96.7 | 21.1 | 0.3 |
PA6/7%Mic−DP | 551.8 | 78.3 | 17.0 | 2.1 |
PA6/10%Mic−DP | 415.9 | 71.4 | 15.7 | 3.2 |
PA6/13%Mic−DP | 319.7 | 62.7 | 12.4 | 5.9 |
PA6/13%RP | 328.4 | 60.0 | 9.1 | 3.5 |
Peak | m/z | Structure | Peak | m/z | Structure |
---|---|---|---|---|---|
1 | 89 | 14 | 92 | ||
2 | 53 | 15 | 266 | ||
3 | 82 | 16 | 270 | ||
4 | 69 | 17 | 258 | ||
5 | 81 | 18 | 280 | ||
6 | 83 | 19 | 296 | ||
7 | 84 | 20 | 268 | ||
8 | 110 | 21 | 312 | ||
9 | 97 | 22 | 278 | ||
10 | 93 | 23 | 254 | ||
11 | 93 | 24 | 340 | ||
12 | 111 | 25 | 306 | ||
13 | 236 | 26 | 354 |
Peak | m/z | Structure | Peak | m/z | Structure |
---|---|---|---|---|---|
1 | 44 | 10 | 97 | ||
2 | 41 | 11 | 156 | ||
3 | 85 | 12 | 93 | ||
4 | 69 | 13 | 96 | ||
5 | 140 | 14 | 110 | ||
6 | 81 | 15 | 92 | ||
7 | 83 | 16 | 238 | ||
8 | 84 | 17 | 278 | ||
9 | 110 | 18 | 266 |
Samples | Impact Energy (J) | Impact Strength (kJ·m−2) |
---|---|---|
PA6 | 0.52 | 12.9 |
PA6/7%Mic−DP | 0.41 | 10.3 |
PA6/10%Mic−DP | 0.39 | 9.6 |
PA6/13%Mic−DP | 0.34 | 8.4 |
PA6/13%RP | 0.11 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Liu, J.; Zeng, L.; Ai, L.; Liu, P. Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double−Shell Microcapsules and Its Application in Flame Retardant Polyamide6. Polymers 2022, 14, 4101. https://doi.org/10.3390/polym14194101
Lu S, Liu J, Zeng L, Ai L, Liu P. Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double−Shell Microcapsules and Its Application in Flame Retardant Polyamide6. Polymers. 2022; 14(19):4101. https://doi.org/10.3390/polym14194101
Chicago/Turabian StyleLu, Shangkai, Junbang Liu, Lijuan Zeng, Lianghui Ai, and Ping Liu. 2022. "Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double−Shell Microcapsules and Its Application in Flame Retardant Polyamide6" Polymers 14, no. 19: 4101. https://doi.org/10.3390/polym14194101
APA StyleLu, S., Liu, J., Zeng, L., Ai, L., & Liu, P. (2022). Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double−Shell Microcapsules and Its Application in Flame Retardant Polyamide6. Polymers, 14(19), 4101. https://doi.org/10.3390/polym14194101