Effects of an Isobutylene–Maleic Anhydride Copolymer on the Rheological Behavior and Early Hydration of Natural Hydraulic Lime
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Testing Methods
2.3.1. Adsorption Amount
2.3.2. Zeta Potential
2.3.3. Fluidity
2.3.4. Rheological Properties
2.3.5. Hydration of NHL Pastes
2.3.6. Microstructure Analysis
2.3.7. Mechanical Properties
3. Results and Discussion
3.1. Adsorption of IBMA on the Surface of NHL
3.2. Fluidity Measurements
3.3. Rheological Behavior
3.4. Effect of IBMA on the Particle Dispersion of NHL Pastes
3.5. Hydration Heat Evolution Process of NHL Pastes
3.6. XRD, FT-IR Spectroscopy, and XPS Analysis
3.7. Mercury Intrusion Porosimetry (MIP)
3.8. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bras, A.; Henriques, F. Natural hydraulic lime based grouts—The selection of grout injection parameters for masonry consolidation. Constr. Build. Mater. 2012, 26, 135–144. [Google Scholar] [CrossRef]
- Velosa, A.L.; Veiga, R.; Coroado, J.; Ferreira, V.M.; Rocha, F. Characterization of Ancient Pozzolanic Mortars from Roman Times to the 19th Century: Compatibility Issues of New Mortars with Substrates and Ancient Mortars. In Materials, Technologies and Practice in Historic Heritage Structures; Springer: Dordrecht, The Netherlands, 2010; pp. 235–257. [Google Scholar]
- Luo, K.; Li, J.; Han, Q.; Lu, Z.; Deng, X.; Hou, L.; Niu, Y.; Jiang, J.; Xu, X.; Cai, P. Influence of nano-SiO2 and carbonation on the performance of natural hydraulic lime mortars. Constr. Build. Mater. 2020, 235, 117411. [Google Scholar] [CrossRef]
- Dai, S.B. Building limes for cultural heritage conservation in China. Herit. Sci. 2013, 1, 2–9. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Asteris, P.G.; Armaghani, D.J.; Douvika, M.G.; Lourenço, P.B.; Cavaleri, L.; Bakolas, A.; Moropoulou, A. Mapping and Holistic Design of Natural Hydraulic Lime Mortars. Cem. Concr. Res. 2020, 136, 106167. [Google Scholar] [CrossRef]
- Garijo, L.; Ortega, J.J.; Ruiz, G.; De La Rosa, Á.; Zhang, X.X. Effect of loading frequency on the fatigue life in compression of natural hydraulic lime mortars. Theor. Appl. Fract. Mec. 2022, 118, 103201. [Google Scholar] [CrossRef]
- Amf, A.; Jv, B.; Jjh, C.; Np, D. Lime binders for the repair of historic buildings: Considerations for CO2 abatement. J. Clean. Prod. 2020, 252, 119802. [Google Scholar]
- Zhang, L.; Miao, X.; Kong, X.; Zhou, S. Retardation effect of PCE superplasticizers with different architectures and their impacts on early strength of cement mortar. Cem. Concr. Compos. 2019, 104, 103369. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Hooton, R.D. Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste. Constr. Build. Mater. 2017, 132, 112–123. [Google Scholar] [CrossRef]
- Moghadam, H.A.; Mirzaei, A.; Dehghi, Z.A. The relation between porosity, hydration degree and compressive strength of Portland cement pastes in the presence of aluminum chloride additive. Constr. Build. Mater. 2020, 250, 118884. [Google Scholar] [CrossRef]
- Chai, M.; Zhang, H.; Zhang, J.; Zhang, Z. Effect of cement additives on unconfined compressive strength of warm and ice-rich frozen soil. Constr. Build. Mater. 2017, 149, 861–868. [Google Scholar] [CrossRef]
- Luo, K.; Li, J.; Lu, Z.; Jiang, J.; Niu, Y. Effect of nano-SiO2 on early hydration of natural hydraulic lime. Constr. Build. Mater. 2019, 216, 119–127. [Google Scholar] [CrossRef]
- Grilo, J.; Silva, A.S.; Faria, P.; Gameiro, A.; Veiga, R.; Velosa, A. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 2014, 51, 287–294. [Google Scholar] [CrossRef]
- Vavričuk, A.; Bosiljkov, V.B.; Kramar, S. The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair. Constr. Build. Mater. 2018, 172, 706–716. [Google Scholar] [CrossRef]
- Barbero-Barrera, M.M.; Medina, N.F. The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Constr. Build. Mater. 2018, 184, 591–601. [Google Scholar] [CrossRef]
- Chan, R.; Bindiganavile, V. Toughness of fibre reinforced hydraulic lime mortar. Part-2: Dynamic response. Mater. Struct. 2010, 43, 1445–1455. [Google Scholar] [CrossRef]
- Chan, R.; Bindiganavile, V. Toughness of fibre reinforced hydraulic lime mortar. Part-1: Quasi-static response. Mater. Struct. 2010, 43, 1435–1444. [Google Scholar] [CrossRef]
- Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Mater. Des. 2014, 63, 398–406. [Google Scholar] [CrossRef]
- Faria, P.; Duarte, P.; Barbosa, D.; Ferreira, I. New composite of natural hydraulic lime mortar with graphene oxide. Constr. Build. Mater. 2017, 156, 1150. [Google Scholar] [CrossRef]
- Luis, G.B.; Fernando, M.A.H.; Fernando, J.; Cidade, M.T. Combined effect of superplasticizer, silica fume and temperature in the performance of natural hydraulic lime grouts. Constr. Build. Mater. 2014, 50, 584–597. [Google Scholar]
- Jorne, F.; Henriques, F.M.A.; Baltazar, L.G. Influence of superplasticizer, temperature, resting time and injection pressure on hydraulic lime grout injectability. Correlation analysis between fresh grout parameters and grout injectability. J. Build. Eng. 2015, 4, 140–151. [Google Scholar] [CrossRef]
- Sun, Y.; Shimai, S.; Peng, X.; Dong, M.; Kamiya, H.; Wang, S. A method for gelcasting high-strength alumina ceramics with low shrinkage. J. Mater. Res. 2014, 29, 247–251. [Google Scholar] [CrossRef]
- Yamamoto, M.; Shimai, S.; Oguma, K.; Wang, S.; Kamiya, H. Alumina particle surface interaction in copolymer of isobutylene and maleic anhydride aqueous solution characterized by colloidal probe atomic force microscopy. Powder Technol. 2019, 354, 369–376. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, H.; Liu, X.; Huang, Z. Aqueous gelcasting of solid-state-sintered SiC ceramics with the addition of the copolymer of isobutylene and maleic anhydride. J. Mater. Process. Technol. 2019, 271, 172–177. [Google Scholar] [CrossRef]
- Lu, Y.; Gan, K.; Xu, J.; Lv, L.; Yang, J. Dispersion and gelation properties of alumina systems with IBMA assisted by dicarboxylic acids. Ceram. Int. 2019, 45, 11939–11945. [Google Scholar] [CrossRef]
- Qin, X.; Zhou, G.; Yang, Y.; Zhang, J.; Shu, X.; Shimai, S.; Wang, S. Gelcasting of transparent YAG ceramics by a new gelling system. Ceram. Int. 2014, 40, 12745–12750. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem. Concr. Res. 2015, 69, 1–9. [Google Scholar] [CrossRef]
- Burgos-Montes, O.; Palacios, M.; Rivilla, P.; Puertas, F. Compatibility between superplasticizer admixtures and cements with mineral additions. Constr. Build. Mater. 2012, 31, 300–309. [Google Scholar] [CrossRef]
- Yoshioka, K.; Tazawa, E.I.; Kawai, K.; Enohata, T. Adsorption characteristics of superplasticizers on cement component minerals. Cem. Concr. Res. 2002, 32, 1507–1513. [Google Scholar] [CrossRef]
- Uchikawa, H.; Hanehara, S.; Sawaki, D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cem. Concr. Res. 1997, 27, 37–50. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Cai, X.P.; Kong, X.M.; Gao, L. Effects of comb-shaped superplasticizers with different charge characteristics on the microstructure and properties of fresh cement pastes. Constr. Build. Mater. 2017, 155, 441–450. [Google Scholar] [CrossRef]
- Baltazar, L.; Henriques, F. The use of rheology in the study of the composition effects on the fresh behaviour of hydraulic lime grouts for injection of masonry walls. Rheol. Acta 2013, 52, 127–138. [Google Scholar] [CrossRef]
- Axelsson, M.; Gustafson, G. A robust method to determine the shear strength of cement-based injection grouts in the field. Tunn. Undergr. Space Technol. 2006, 21, 499–503. [Google Scholar] [CrossRef]
- Baltazar, L.; Henriques, F. Experimental Study and Modeling of Rheological and Mechanical Properties of NHL Grouts. J. Mater. Civ. Eng. 2015, 27, 04015055. [Google Scholar] [CrossRef]
- Kong, X. Properties and microstructure of polymer modified mortar based on different acrylate latexes. J. Chin. Ceram. Soc. 2009, 37, 107–114. [Google Scholar]
- Tong, S.; Xk, A.; Hta, B.; Dw, B. Effects of comb-like PCE and linear copolymers on workability and early hydration of a calcium sulfoaluminate belite cement. Cem. Concr. Res. 2019, 123, 105801. [Google Scholar]
- Tian, H.; Kong, X.; Su, T.; Wang, D. Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems. Cem. Concr. Res. 2019, 115, 43–58. [Google Scholar] [CrossRef]
- Chang, L.; Pu, Y.; Jing, P.; Cui, Y.; Qiao, C. Magnetic core-shell MnFe2O4@TiO2 nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu (II) from water. Appl. Surf. Sci. 2020, 541, 148400. [Google Scholar] [CrossRef]
Elements | CaO | SiO2 | MgO | Al2O3 | Fe2O3 | SO3 | K2O |
NHL2 | 68.90 | 14.53 | 8.66 | 4.00 | 1.66 | 1.25 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Li, Y.; Hui, J.; Wang, W.; Zhang, B.; Chang, L.; Jiao, Y.; Sang, Z.; Luo, H.; Wang, X. Effects of an Isobutylene–Maleic Anhydride Copolymer on the Rheological Behavior and Early Hydration of Natural Hydraulic Lime. Polymers 2022, 14, 4104. https://doi.org/10.3390/polym14194104
Wei X, Li Y, Hui J, Wang W, Zhang B, Chang L, Jiao Y, Sang Z, Luo H, Wang X. Effects of an Isobutylene–Maleic Anhydride Copolymer on the Rheological Behavior and Early Hydration of Natural Hydraulic Lime. Polymers. 2022; 14(19):4104. https://doi.org/10.3390/polym14194104
Chicago/Turabian StyleWei, Xiaohong, Yunfeng Li, Jing Hui, Wenwen Wang, Biao Zhang, Liangliang Chang, Yuhong Jiao, Zhen Sang, Hongjie Luo, and Xiufeng Wang. 2022. "Effects of an Isobutylene–Maleic Anhydride Copolymer on the Rheological Behavior and Early Hydration of Natural Hydraulic Lime" Polymers 14, no. 19: 4104. https://doi.org/10.3390/polym14194104
APA StyleWei, X., Li, Y., Hui, J., Wang, W., Zhang, B., Chang, L., Jiao, Y., Sang, Z., Luo, H., & Wang, X. (2022). Effects of an Isobutylene–Maleic Anhydride Copolymer on the Rheological Behavior and Early Hydration of Natural Hydraulic Lime. Polymers, 14(19), 4104. https://doi.org/10.3390/polym14194104