Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS)
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Methods
2.2. SS Extraction in an Autoclave Using Pure Water
2.3. Preparation of EtOH Non-Precipitated SS
2.4. Preparation of Glycine Non-Precipitated SS
2.5. Characterization of SS Filtrate
2.5.1. Molecular Weight Estimation of SS Filtrate with SDS-PAGE
2.5.2. Fast Performance Liquid Chromatography (FPLC)
2.5.3. Circular Dichroism (CD) of SS Solution
2.5.4. SS Gelation Monitoring
2.5.5. Fourier Transformed Infrared (FT-IR) Analysis
2.5.6. Cytotoxicity Assay of SS Solution
2.5.7. Raw 264.7 Cell Proliferation after SS Solution and Gel Treatment
3. Results and Discussion
3.1. SS Concentration (wt. %)
3.2. The Molecular Weight Distribution of Degummed SS Protein
3.3. Secondary Structure of SS Solution and Gel
3.4. Stability Monitoring of SS Aqueous at 4 °C
3.5. SS Gel Thermal-Reversibility
3.6. IR Spectroscopy of SS Solution and Gel
3.7. Cell Viability and Cell Proliferation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.G.; Kweon, H.; Jo, Y.Y. Toll-like receptor and silk sericin for tissue engineering. Int. J. Ind. Entomol. 2021, 42, 1–6. [Google Scholar] [CrossRef]
- Lee, K.G.; Yeo, J.H.; Lee, Y.W.; Kweon, H.Y.; Kim, J.H. Bioactive and skin-compatible properties of silk sericin. Korean J. Seric. Sci. 2001, 43, 109–115. [Google Scholar]
- Kweon, H.Y.; Yeo, J.H.; Kim, K.Y.; Kim, Y.S.; Song, H.S.; Kim, S.J.; Woo, S.O.; Han, S.M.; Lee, K.G. Characteristics of Silk Sericin Extracted from Sericinjam. Int. J. Ind. Entomol. 2009, 18, 121–124. [Google Scholar]
- Nishida, A.; Yamada, M.; Kanazawa, T.; Takashima, Y.; Ouchi, K.; Okada, H. Use of Silk Protein, Sericin, as a Sustained-Release Material in the Form of a Gel, Sponge and Film. Chem. Pharm. Bull. 2010, 58, 1480–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaithanomsat, P.; Kitpreechavanich, V. Sericin separation from silk degumming wastewater. Sep. Purif. Technol. 2008, 59, 129–133. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.Y.; Lee, K.H. Effect of Salts on Gelation Time of Silk Sericin Solution. Int. J. Ind. Exntomol. 2013, 27, 326–328. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Lee, J.Y.; Kim, A.; Ki, C.S.; Kim, J.W.; Park, Y.H.; Lee, K.H. Preparation of Silk Sericin Beads Using LiCl/DMSO Solvent and Their Potential as a Drug Carrier for Oral Administration. Fibers Polym. 2007, 8, 470–476. [Google Scholar] [CrossRef]
- Gupta, D.; Agrawal, A.; Chaudhary, H.; Gulrajani, M.; Gupta, C. Cleaner process for extraction of sericin using infrared. J. Clean. Prod. 2013, 52, 488–494. [Google Scholar] [CrossRef]
- Silva, V.R.; Ribani, M.; Gimenes, M.L.; Scheer, A.P. High Molecular Weight Sericin Obtained by High Temperature and Ultrafiltration Process. Procedia Eng. 2012, 42, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Teramoto, H.; Kakazu, A.; Yamauchi, K.; Asakura, T. Role of Hydroxyl Side Chains in Bombyx mori Silk Sericin in Stabilizing Its Solid Structure. Macromolecules 2007, 40, 1562–1569. [Google Scholar] [CrossRef]
- Dash, R.; Mukherjee, S.; Kundu, S. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int. J. Biol. Macromol. 2006, 38, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Kweon, H.Y.; Yeo, J.H.; Lee, K.G.; Lee, Y.W.; Park, Y.H.; Nahm, J.H.; Cho, C.S. Effects of poloxamer on the gelation of silk sericin. Macromol. Rapid Commun. 2000, 21, 1302–1305. [Google Scholar] [CrossRef]
- Wu, J.-H.; Wang, Z.; Xu, S.-Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem. 2007, 103, 1255–1262. [Google Scholar] [CrossRef]
- Towell, J.F.; Manning, M.C. Analysis of protein structure by circular dichroism spectroscopy. Technol. Instrum. Anal. Chem. 1994, 14, 175–205. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.Y.; Kim, M.K.; Um, I.C.; Lee, K.H. Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int. J. Biol. Macromol. 2011, 48, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Kim, Y.A.; Barbeau, W.E. Evaluation of SDS-PAGE Method for Estimating Protein Digestibility. J. Food Sci. 1991, 56, 1082–1086. [Google Scholar] [CrossRef]
- Takasu, Y.; Yamada, H.; Tsubouchi, K. Isolation of Three Main Sericin Components from the Cocoon of the Silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2002, 66, 2715–2718. [Google Scholar] [CrossRef]
- Sprague, K.U. Bombyx mori silk proteins. Characterization of large polypeptides. Biochemistry 1975, 14, 925–931. [Google Scholar] [CrossRef]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 72–95. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2007, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Mitaku, S. Mechanisms of secondary structure breakers in soluble proteins. BIOPHYSICS 2005, 1, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiani, A.; Mohammed, A.; Frielinghaus, H.; Collins, R.; Hodson, N.; Kielty, C.M.; Sherratt, M.J.; Miller, A.F. Self-assembly and gelation proper-ties of α-helix versus β-sheet forming peptides. Soft Matter. 2009, 5, 326–328. [Google Scholar] [CrossRef]
- Padamwar, M.N.; Pawar, A.P. Silk sericin and its applications: A review. J. Sci. Ind. Res. 2004, 63, 323–329. [Google Scholar]
- Jang, M.J.; Um, I.C. Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin. Eur. Polym. J. 2017, 93, 761–774. [Google Scholar] [CrossRef]
- DeFlores, L.P.; Ganim, Z.; Nicodemus, R.A.; Tokmakoff, A. Amide I′−II′ 2D IR Spectroscopy Provides Enhanced Protein Secondary Structural Sensitivity. J. Am. Chem. Soc. 2009, 131, 3385–3391. [Google Scholar] [CrossRef]
- Jo, Y.N.; Park, B.-D.; Um, I.C. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin. Int. J. Biol. Macromol. 2015, 81, 936–941. [Google Scholar] [CrossRef]
- Arango, M.C.; Álvarez-López, C. Effect of freezing temperature on the properties of lyophilized silk sericin scaffold. Mater. Res. Express 2019, 6, 095414. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, A.K.; Singh, V.; Rai, S. Vibrational spectrum of glycine molecule. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2004, 61, 2741–2746. [Google Scholar] [CrossRef]
Extraction Ingredients | Time (h) | Temperature (°C) | ||
---|---|---|---|---|
80 °C | 100 °C | 120 °C | ||
Water | 1 | 0.06 | 0.40 | 1.63 |
3 | 0.09 | 0.64 | 1.88 | |
5 | 0.09 | 1.00 | 1.98 | |
EtOH 5% | 1 | 0.08 | 0.20 | 1.32 |
3 | 0.09 | 0.70 | 1.70 | |
5 | 0.09 | 0.74 | 1.86 | |
EtOH 10% | 1 | 0.07 | 0.90 | 1.23 |
3 | 0.16 | 1.00 | 1.74 | |
5 | 0.22 | 1.23 | 1.86 | |
Glycine 5% | 1 | 0.03 | 0.75 | 1.60 |
3 | 0.04 | 1.03 | 1.70 | |
5 | 0.04 | 1.60 | 2.10 | |
Glycine 10% | 1 | 0.03 | 0.80 | 1.61 |
3 | 0.04 | 1.03 | 1.86 | |
5 | 0.05 | 1.61 | 2.01 |
Parameter | Retention Time (min) | Kav | Log MW | MW (kDa) |
---|---|---|---|---|
Pure glycine | 38.50 | - | - | - |
Water extract | 18.66 | 0.000681 | 1.173818 | 69.5 |
20.22 | 0.005014 | 1.172739 | 69 | |
EtOH 5% extract | 18.33 | 0.000872 | 1.173771 | 69.5 |
EtOH 10% extract | 21.19 | 0.004086 | 1.172970 | 69.2 |
Glycine 5% extract | 16.13 | 0.102703 | 1.148413 | 60 |
17.65 | 0.033747 | 1.165584 | 65.65 | |
38.30 | - | - | - | |
Glycine 10% extract | 12.66 | 0.006551 | 1.172356 | 69 |
16.67 | 0.001366 | 1.17348 | 69.5 | |
38.66 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muindi, M.P.; Lee, J.H.; Kweon, H.; Kasina, M. Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS). Polymers 2022, 14, 4118. https://doi.org/10.3390/polym14194118
Muindi MP, Lee JH, Kweon H, Kasina M. Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS). Polymers. 2022; 14(19):4118. https://doi.org/10.3390/polym14194118
Chicago/Turabian StyleMuindi, Munguti Peter, Ji Hae Lee, HaeYong Kweon, and Muo Kasina. 2022. "Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS)" Polymers 14, no. 19: 4118. https://doi.org/10.3390/polym14194118
APA StyleMuindi, M. P., Lee, J. H., Kweon, H., & Kasina, M. (2022). Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS). Polymers, 14(19), 4118. https://doi.org/10.3390/polym14194118