Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Block Copolymers
2.2. The Effect of the PEG Chain Length on the Self-Assembly of the Block Copolymer
2.3. The Effect of the Polymer Concentration on the Self-Assembly of the Block Copolymer
2.4. The Effect of the Solvent on the Self-Assembly of the Block Copolymer
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klinker, K.; Schafer, O.; Huesmann, D.; Bauer, T.; Capeloa, L.; Braun, L.; Stergiou, N.; Schinnerer, M.; Dirisala, A.; Miyata, K.; et al. Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures. Angew. Chem. Int. Ed. 2017, 56, 9608–9613. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Li, Y.C.; Lu, Z.Y. The important role of cosolvent in the amphiphilic diblock copolymer self-assembly process. Polymer 2019, 171, 1–7. [Google Scholar] [CrossRef]
- Qi, R.; Jin, Y.; Cheng, X.F.; Fan, B.Z.; Sun, T.B.; Peng, S.J.; Li, H.P. Crystallization-Driven Self-Assembly of Rod-Coil-Rod Pseudopolyrotaxanes into Spherical Micelles, Nanorods, and Nanorings in Aqueous Solutions. Macromol. Rapid Commun. 2015, 36, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.S.; Zhang, D.H. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers 2021, 13, 3131. [Google Scholar] [CrossRef]
- Qi, R.; Jin, Y. pH- and concentration-controlled self-assembly of spherical micelles with cavity, necklace and cylindrical micelles. RSC Adv. 2016, 6, 47174–47177. [Google Scholar] [CrossRef]
- Qi, R.; Jin, Y.; Cheng, X.F.; Li, H.P.; Lai, S.Q.; Sun, X.P. Water-Induced Transitions from Ellipsoidal Micelles to Chain-Like Nanostructures Self-Assembled by the Coil-Rod-Coil Block Copolymer Based on Hydrogen-Bonding Urea Groups. Macromol. Chem. Phys. 2016, 217, 1851–1859. [Google Scholar] [CrossRef]
- Tian, Q.R.; Fei, C.H.; Yin, H.Y.; Feng, Y.J. Stimuli-responsive polymer wormlike micelles. Prog. Polym. Sci. 2019, 89, 108–132. [Google Scholar] [CrossRef]
- Yin, H.Y.; Feng, Y.J.; Li, P.X.; Doutch, J.; Han, Y.X.; Mei, Y.J. Cryogenic viscoelastic surfactant fluids: Fabrication and application in a subzero environment. J. Colloid Interface Sci. 2019, 551, 89–100. [Google Scholar] [CrossRef]
- Han, L.; Wang, M.J.; Jia, X.M.; Chen, W.; Qian, H.J.; He, F. Uniform two-dimensional square assemblies from conjugated block copolymers driven by pi-pi interactions with controllable sizes. Nat. Commun. 2018, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.F.; Wu, L.B.; Yu, W.; Wilks, T.R.; Dove, A.P.; Ding, H.M.; O’Reilly, R.K.; Chen, G.S.; Jiang, M. Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Lett. 2019, 8, 596–602. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, R.; Mai, B.Y.; Wang, W.J.; Wu, Q.; Liang, G.D.; Gao, H.Y.; Zhu, F.M. Temperature-induced and crystallization-driven self-assembly of polyethylene-b-poly(ethylene oxide) in solution. Polymer 2013, 54, 1663–1670. [Google Scholar] [CrossRef]
- Kang, L.Y.; Chao, A.; Zhang, M.; Yu, T.Y.; Wang, J.; Wang, Q.; Yu, H.H.; Jiang, N.S.; Zhang, D.H. Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. J. Am. Chem. Soc. 2021, 143, 5890–5902. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Liu, B.H.; Li, H.M.; Wang, J.; Li, X.H.; Jin, Y.; Xie, S.Z. Formation of ultrathin scarf-like micelles, ultrathin disk-like micelles and spherical micelles by self-assembly of polyurethane diblock copolymers. J. Mol. Liq. 2022, 360, 119466. [Google Scholar] [CrossRef]
- Sun, S.T.; Xu, S.J.; Zhang, W.D.; Wu, P.Y.; Zhang, W.; Zhu, X.L. Cooperative self-assembly and crystallization into fractal patterns by PNIPAM-based nonlinear multihydrophilic block copolymers under alkaline conditions. Polym. Chem. 2013, 4, 5800–5809. [Google Scholar] [CrossRef]
- Zheng, T.T.; Feng, H.H.; van den Broek, J.M.; Rahimi, K.; Kuehne, A.J.C.; de Vries, R.; Sprakel, J. Controlling the Hierarchical Assembly of pi-Conjugated Oligoelectrolytes. Macromol. Rapid Commun. 2018, 39, 1800284 (1-6). [Google Scholar] [CrossRef]
- Li, K.; Yang, J.; Gu, J.L. Hierarchically Porous MOFs Synthesized by Soft-Template Strategies. Acc. Chem. Res. 2022, 55, 2235–2247. [Google Scholar] [CrossRef]
- Valery, C.; Artzner, F.; Paternostre, M. Peptide nanotubes: Molecular organisations, self-assembly mechanisms and applications. Soft Matter 2011, 7, 9583–9594. [Google Scholar] [CrossRef]
- Wen, T.; Wang, H.F.; Li, M.C.; Ho, R.M. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers. Acc. Chem. Res. 2017, 50, 1011–1021. [Google Scholar] [CrossRef]
- Zollfrank, C.; Cromme, P.; Rauch, M.; Scheel, H.; Kostova, M.H.; Gutbrod, K.; Gruber, S.; Van Opdenbosch, D. Biotemplating of inorganic functional materials from polysaccharides. Bioinspired Biomimetic Nanobiomater. 2012, 1, 13–25. [Google Scholar] [CrossRef]
- Cameron, J.M.; Guillemot, G.; Galambos, T.; Amin, S.S.; Hampson, E.; Haidaraly, K.M.; Newton, G.N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328. [Google Scholar] [CrossRef]
- Dong, R.H.; Pfeffermann, M.; Liang, H.W.; Zheng, Z.K.; Zhu, X.; Zhang, J.; Feng, X.L. Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 12058–12063. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.C.; Sun, S.W.; Zhang, Y.J.; Sun, L.; Su, Z.Q.; Wu, A.G.; Wei, G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019, 11, 4147–4182. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.F.; Du, L.L.; He, Y.X.; Jin, X.H.; Pearce, S.; Eloi, J.C.; Harniman, R.L.; Alibhai, D.; Ye, R.Q.; et al. Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nat. Chem. 2020, 12, 1150. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Saha, M.L.; Stang, P.J. Hierarchical Assemblies of Supramolecular Coordination Complexes. Acc. Chem. Res. 2018, 51, 2047–2063. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Eijkel, J.C.T.; Jin, M.L.; Xie, S.T.; Yuan, D.; Zhou, G.F.; van den Berg, A.; Shui, L.L. Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles. Sens. Actuator B-Chem. 2017, 247, 78–91. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Pearce, S.; Eloi, J.C.; Harniman, R.L.; Tian, J.; Cordoba, C.; Kang, Y.T.; Fukui, T.; Qiu, H.B.; Blackburn, A.; et al. Dendritic Micelles with Controlled Branching and Sensor Applications. J. Am. Chem. Soc. 2021, 143, 5805–5814. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.X.; Liu, Y.J.; Xi, C.Y.; Bao, C.L.; Xu, H.; Shen, X.P.; Zhu, X.L. Polymer guided synthesis of Ni(OH)2 with hierarchical structure and their application as the precursor for sensing materials. Crystengcomm 2013, 15, 9189–9195. [Google Scholar] [CrossRef]
- Hils, C.; Manners, I.; Schobel, J.; Schmalz, H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers 2021, 13, 1481. [Google Scholar] [CrossRef]
- Karayianni, M.; Pispas, S. Block copolymer solution self-assembly: Recent advances, emerging trends, and applications. J. Polym. Sci. 2021, 59, 1874–1898. [Google Scholar] [CrossRef]
- Milton, M.; Deng, R.; Mann, A.; Wang, C.Y.; Tang, D.N.; Weck, M. Secondary Structure in Nonpeptidic Supramolecular Block Copolymers. Acc. Chem. Res. 2021, 54, 2397–2408. [Google Scholar] [CrossRef]
- Adhikari, B.; Lin, X.; Yamauchi, M.; Ouchi, H.; Aratsua, K.; Yagai, S. Hydrogen-bonded rosettes comprising pi-conjugated systems as building blocks for functional one-dimensional assemblies. Chem. Commun. 2017, 53, 9663–9683. [Google Scholar] [CrossRef]
- Liang, J.Q.; Guo, P.P.; Qin, X.J.; Gao, X.H.; Ma, K.; Zhu, X.F.; Jin, X.; Xu, W.W.; Jiang, L.X.; Duan, P.F. Hierarchically Chiral Lattice Self-Assembly Induced Circularly Polarized Luminescence. ACS Nano 2020, 14, 3190–3198. [Google Scholar] [CrossRef]
- Yagai, S. Supramolecularly Engineered Functional pi-Assemblies Based on Complementary Hydrogen-Bonding Interactions. Bull. Chem. Soc. Jpn. 2015, 88, 28–58. [Google Scholar] [CrossRef]
- Xu, L.M.; Jiang, L.X.; Drechsler, M.; Sun, Y.; Liu, Z.R.; Huang, J.B.; Tang, B.Z.; Li, Z.B.; Stuart, M.A.C.; Yan, Y. Self-Assembly of Ultralong Polyion Nanoladders Facilitated by Ionic Recognition and Molecular Stiffness. J. Am. Chem. Soc. 2014, 136, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Jelinek, R. Hierarchical Assembly of Polydiacetylene Microtube Biosensors Mediated by Divalent Metal Ions. ChemPlusChem 2016, 81, 119–124. [Google Scholar] [CrossRef]
- Kartha, K.K.; Allampally, N.K.; Politi, A.T.; Prabhu, D.D.; Ouchi, H.; Albuquerque, R.Q.; Yagai, S.; Fernandez, G. Influence of metal coordination and light irradiation on hierarchical self-assembly processes. Chem. Sci. 2019, 10, 752–760. [Google Scholar] [CrossRef] [Green Version]
- Lunn, D.J.; Gould, O.E.C.; Whittell, G.R.; Armstrong, D.P.; Mineart, K.P.; Winnik, M.A.; Spontak, R.J.; Pringle, P.G.; Manners, I. Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles. Nat. Commun. 2016, 7, 12371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.Q.; Jin, Q.X.; Zhang, L.; Shen, Z.C.; Jiang, L.; Liu, M.H. Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers. Small 2016, 12, 4743–4752. [Google Scholar] [CrossRef]
- He, Y.X.; Eloi, J.C.; Harniman, R.L.; Richardson, R.M.; Whittell, G.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K.; Manners, I. Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via “Living” Crystallization-Driven Self-Assembly of Poly(-lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. J. Am. Chem. Soc. 2019, 141, 19088–19098. [Google Scholar] [CrossRef]
- Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z.P.L.; Wilson, N.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 2017, 8, 4223–4230. [Google Scholar] [CrossRef] [PubMed]
- Song, S.F.; Liu, X.M.; Nikbin, E.; Howe, J.Y.; Yu, Q.; Manners, I.; Winnik, M.A. Uniform 1D Micelles and Patchy & Block Comicelles via Scalable, One-Step Crystallization-Driven Block Copolymer Self-Assembly. J. Am. Chem. Soc. 2021, 143, 6266–6280. [Google Scholar]
- Goel, M.; Narasimha, K.; Jayakannan, M. Helical Self-Assemblies of Segmented Poly(phenylenevinylene)s and Their Hierarchical Donor-Acceptor Complexes. Macromolecules 2014, 47, 2592–2603. [Google Scholar] [CrossRef]
- Wang, M.T.; Han, L.; Zhu, Y.L.; Qi, R.; Tian, L.L.; He, F. Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Self-Assembly of Conjugated Block Copolymers. Small Methods 2020, 4, 1900470. [Google Scholar] [CrossRef]
- Li, X.Y.; Gao, Y.; Harniman, R.; Winnik, M.; Manners, I. Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. J. Am. Chem. Soc. 2016, 138, 12902–12912. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.F.; Xu, L.L.; Fu, X.H.; Sun, J.; Li, Z.B. Light- and Metal Ion-Induced Self-Assembly and Reassembly Based on Block Copolymers Containing a Photoresponsive Polypeptide Segment. Macromolecules 2019, 52, 4686–4693. [Google Scholar] [CrossRef]
- Wang, M.J.; Zhu, Y.L.; Han, L.; Qi, R.; He, F. Inky flower-like supermicelles assembled from pi-conjugated block copolymers. Polym. Chem. 2020, 11, 61–67. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, K.; Wei, Z.X. Self-assembly of conjugated polymers for anisotropic nanostructures. Sci. China-Chem. 2012, 55, 2283–2291. [Google Scholar] [CrossRef]
- Huang, Y.J.; Yu, F.; Cao, X.; Nie, L.; Zhang, P.F.; Xu, F.G.; Gong, Q.Y.; Zhan, X.J.; Zhao, K.X.; Huang, Y.Z.; et al. Tunable low-dimensional self-assembly of H-shaped bichromophoric perylenediimide Gemini in solution. Nanoscale 2020, 12, 3058–3067. [Google Scholar] [CrossRef]
- Jo, G.; Jung, J.; Chang, M. Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors. Polymers 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Persson, N.E.; Chu, P.H.; McBride, M.; Grover, M.; Reichmanis, E. Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs. Acc. Chem. Res. 2017, 50, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.H.; Chan, Y.T. Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers. Polymers 2020, 12, 2842. [Google Scholar] [CrossRef]
- Ye, S.; Lotocki, V.; Xu, H.; Seferos, D.S. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem. Soc. Rev. 2022, 51, 6442–6474. [Google Scholar] [CrossRef]
- Qi, R.; Zhu, Y.L.; Han, L.; Wang, M.J.; He, F. Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)-b-poly(ethylene glycol). Macromolecules 2020, 53, 6555–6565. [Google Scholar] [CrossRef]
- Lee, M.J.; Jeon, H.; Jang, M.; Yang, H. A Physicochemical Approach Toward Extending Conjugation and the Ordering of Solution-Processable Semiconducting Polymers. ACS Appl. Mater. Interfaces 2016, 8, 4819–4827. [Google Scholar] [CrossRef]
c (mg.mL−1) | Dw (nm) | Dn (nm) | Dw/Dn | Lw (nm) | Ln (nm) | Lw/Ln | R | σ |
---|---|---|---|---|---|---|---|---|
0.001 | 1823 | 1699 | 1.074 | 1677 | 1570 | 1.068 | 2.331 | 0.947 |
0.005 | 2790 | 2549 | 1.09 | 2600 | 2359 | 1.102 | 3.234 | 1.328 |
0.015 | 3503 | 2987 | 1.173 | 3091 | 2598 | 1.190 | 3.440 | 1.328 |
0.03 | 5622 | 4642 | 1.211 | 2593 | 2155 | 1.203 |
Polymers | Solvent | c (mg.mL−1) | Ln (nm) | Lw (nm) | Lw/Ln |
---|---|---|---|---|---|
P3HT22-b-PEG43 | isobutanol | 0.015 | 1355 | 2131 | 1.572 |
P3HT22-b-PEG113 | methanol | 0.015 | 95 | 111 | 1.170 |
P3HT22-b-PEG113 | ethanol | 0.015 | 171 | 216 | 1.260 |
P3HT22-b-PEG113 | isobutanol | 0.015 | 845 | 1213 | 1.436 |
P3HT22-b-PEG113 | i-PrOH | 0.001 | 289 | 368 | 1.275 |
P3HT22-b-PEG113 | i-PrOH | 0.005 | 440 | 516 | 1.172 |
P3HT22-b-PEG113 | i-PrOH | 0.015 | 513 | 671 | 1.306 |
P3HT22-b-PEG113 | i-PrOH | 0.03 | 870 | 1173 | 1.348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, R.; Qi, W.; Zhang, Y.; Liu, B.; Wang, J.; Li, H.; Yuan, H.; Xie, S. Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers 2022, 14, 4125. https://doi.org/10.3390/polym14194125
Qi R, Qi W, Zhang Y, Liu B, Wang J, Li H, Yuan H, Xie S. Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers. 2022; 14(19):4125. https://doi.org/10.3390/polym14194125
Chicago/Turabian StyleQi, Rui, Wensheng Qi, Yin Zhang, Baohua Liu, Jian Wang, Hongmei Li, Haimei Yuan, and Songzhi Xie. 2022. "Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers" Polymers 14, no. 19: 4125. https://doi.org/10.3390/polym14194125
APA StyleQi, R., Qi, W., Zhang, Y., Liu, B., Wang, J., Li, H., Yuan, H., & Xie, S. (2022). Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers, 14(19), 4125. https://doi.org/10.3390/polym14194125