Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Distilled water, ethanol (University of Chemistry and Technology Prague, Czech Republic).
- Methanol, hexane, acetone, dichloromethane, acetanhydride, hydrochloric acid, sulfuric acid, sodium chloride, sodium hydroxide, hydrogen peroxide (PENTA s.r.o., Prague, Czech Republic).
- Sodium borohydride, copper(II) chloride, pepsin from porcine gastric mucosa, formic acid, trifluoroacetic acid, m-hydroxybiphenyl, methyl iodide, 1-methylimidazole, 2-deoxy-d-glucose (Sigma-Aldrich, Saint Louis, MO, USA).
- Pronase from Streptomyces griseus (Roche Holding AG, Basel, Switzerland).
- Dimethyl sulfoxide (ThermoFisher Scientific, Waltham, MA, USA).
- Potassium bromide for IR spectroscopy (Merck, KGaA, Darmstadt, Germany).
2.2. Preparative Procedures
2.3. Preparative Chromatography
2.4. Analytical Methods
2.4.1. Phenol-Sulfuric Acid Assay
2.4.2. Organic Elemental Analysis
2.4.3. Monosaccharide Composition and Linkages
2.4.4. FTIR Spectroscopy
2.4.5. FT Raman Spectroscopy
2.4.6. NMR Spectroscopy
3. Results and Discussion
3.1. Yields of Isolation
3.2. Organic Elemental Composition
3.3. Monosaccharide Composition and Linkage
3.4. Preparative Chromatography
3.5. Vibrational Spectra
3.6. NMR Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Li, J.Q.; Zhang, J.; Li, Z.M.; Liu, H.G.; Wang, Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Gabryelska, K.; Grabarczyk, M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules 2019, 24, 4075. [Google Scholar] [CrossRef] [Green Version]
- Hapuarachchi, K.K.; Elkhateeb, W.A.; Karunarathna, S.C.; Cheng, C.R.; Bandara, A.R.; Kakumyan, P.; Cheng, C.R.; Bandara, A.R.; Kakumyan, P.; Hyde, K.D.; et al. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere 2018, 9, 1025–1052. [Google Scholar] [CrossRef]
- Rai, M.K.; Gaikwad, S.; Nagaonkar, D.; dos Santos, C.A. Current advances in the antimicrobial potential of species of genus Ganoderma (higher Basidiomycetes) against human pathogenic microorganisms. Int. J. Med. Mushrooms 2015, 17, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.; Gáper, J.; Šebesta, M.; Gáperová, S. Host preferences of wood-decaying fungi of the genus Ganoderma in the urban areas of Slovakia. Ann. Univ. Paedagog. Crac. Studia Nat. 2018, 3, 22–37. [Google Scholar] [CrossRef]
- Zhou, X.W.; Cong, W.R.; Su, K.Q.; Zhang, Y.M. Ligninolytic enzymes from Ganoderma spp.: Current status and potential applications. Crit. Rev. Microbiol. 2013, 39, 416–426. [Google Scholar] [CrossRef]
- De Souza Silva, C.M.M.; De Melo, I.S.; De Oliveira, P.R. Ligninolytic enzyme production by Ganoderma spp. Enzym. Microb. Technol. 2005, 37, 324–329. [Google Scholar] [CrossRef]
- Murugesan, K.; Nam, I.; Kim, Y.; Chang, Y. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enz. Microb. Technol. 2007, 40, 1662–1672. [Google Scholar] [CrossRef]
- Deflorio, G.; Johnson, C.; Fink, S.; Schwarze, F.W.M.R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 2008, 255, 2373–2383. [Google Scholar] [CrossRef]
- Xu, Z.T.; Chen, X.U.; Zhong, Z.F.; Che, L.D.; Wang, Y.T. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Seweryn, E.; Ziała, A.; Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 2021, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.A.; Wani, A.H.; War, J.M.; Bhat, M.Y. Mayor bioactive properties of Ganoderma polysaccharides. A review. Asian J. Pharm. Clin. Res. 2021, 14, 11–24. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Tang, Q.; Zhou, S.; Feng, J.; Chen, H. Polysaccharide of Ganoderma and its bioactivities. In Ganoderma and Health. Advances in Experimental Medicine and Biology; Lin, Z., Yang, B., Eds.; Springer: Singapore, 2019; Volume 1181, pp. 107–134. [Google Scholar]
- Cör, D.; Knez, Ž.; Knez Hrnčič, M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.C.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.R.; Vasconcelos, M.H.; Sokovic, M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015, 114, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Benkeblia, N. Ganoderma lucidum polysaccharides and terpenoids: Profile and health benefits. J. Food Nutr. Diet. 2015, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Camargo, M.R.; Kaneno, R. Antitumor properties of Ganoderma lucidum polysaccharides and terpenoids. Annu. Rev. Biomed. Sci. 2011, 13, 1–8. [Google Scholar]
- Nie, S.; Zhang, H.; Li, W.; Xie, M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre 2013, 1, 10–20. [Google Scholar] [CrossRef]
- Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019, 174, 130–141. [Google Scholar] [CrossRef]
- Peng, X.; Qiu, M. Meroterpenoids from Ganoderma species: A review of last five years. Nat. Prod. Bioprosp. 2018, 8, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, E.A.; Choi, J.H.; Seong, G.U.; Chung, S.K. Isolation of polyphenol compounds from Ganoderma lucidum and pancreatic lipase inhibitory activities. J. Korean Soc. Food Sci. Nutr. 2020, 49, 28–34. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.Y.; Lee, M.J.; Oh, H.N.; Kang, D.H.; Jhune, C.S. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J. Mushroom 2013, 11, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Batra, P.; Beniwal, V.; Gupta, G.K.; Sharma, A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019, 17, 100268. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, A.; Mirmazloum, I.; Naár, Z.; Némedi, E. Supplementation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) extract enhanced the medicinal values and prebiotic index of hungarian acacia honey. Int. J. Med. Mushrooms 2019, 21. [Google Scholar] [CrossRef]
- Prasad, S.; Rathore, H.; Sharma, S.; Yadav, A.S. Medicinal mushrooms as a source of novel functional food. Int. J. Food Sci. Nutr. Diet. 2015, 4, 221–225. [Google Scholar]
- Perera, P.K.; Li, Y. Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct. Foods Health Dis. 2011, 1, 161–171. [Google Scholar] [CrossRef]
- Gow, N.A.; Latge, J.P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectrum 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Free, S.J. Fungal cell wall organization and biosynthesis. Adv. Genet. 2013, 81, 33–82. [Google Scholar]
- Latgé, J.P. The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 2007, 66, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, Z.; Zhang, L.; Fang, Y.; Jiang, F.; Phillips, G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011, 86, 844–851. [Google Scholar] [CrossRef]
- Pan, K.; Jiang, Q.; Liu, G.; Miao, X.; Zhong, D. Optimization extraction of Ganoderma lucidum polysaccharides rides and its immunity and antioxidant activities. Int. J. Biol. Macromol. 2013, 55, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Baeva, E.; Bleha, R.; Lavrova, E.; Sushytskyi, L.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization. Molecules 2019, 24, 2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.K.; Ding, Z.C.; Gao, X.; Wang, Y.Y.; Yang, Y.; Wu, D.; Zhang, H.N. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydr. Polym. 2018, 193, 373–382. [Google Scholar] [CrossRef]
- Huang, S.Q.; Li, J.W.; Wang, Z.; Pan, H.X.; Chen, J.X.; Ning, Z.X. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules 2010, 15, 3694–3708. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Chikari, F.; Han, J.; Wang, Y.; Ao, W. Synergized subcritical-ultrasound-assisted aqueous two-phase extraction, purification, and characterization of Lentinus edodes polysaccharides. Process Biochem. 2020, 95, 297–306. [Google Scholar] [CrossRef]
- Lin, Y.; Zeng, H.; Wang, K.; Lin, H.; Li, P.; Huang, Y.; Zhou, S.; Zhang, W.; Chen, C.; Fan, H. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int. J. Biol. Macromol. 2019, 136, 305–315. [Google Scholar] [CrossRef]
- Kang, Q.; Chen, S.; Li, S.; Wang, B.; Liu, X.; Hao, L.; Lu, J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol. 2019, 124, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Do, D.T.; Lam, D.H.; Nguyen, T.; Phuong Mai, T.T.; Phan, L.T.M.; Vuong, H.T.; Nguyen, D.V.; Linh, N.T.; Hoang, M.N.; Mai, T.P.; et al. Utilization of response surface methodology in optimization of polysaccharides extraction from Vietnamese Red Ganoderma lucidum by ultrasound-assisted enzymatic method and examination of bioactivities of the extract. Sci. World J. 2021, 2021, 7594092. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ning, Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010, 47, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Wahyudiono; Machmudah, S.; Sasaki, M.; Goto, M. Hot compressed water extraction of polysaccharides from Ganoderma lucidum using a semibatch reactor. Asia-Pac. J. Chem. Eng. 2014, 9, 125–133. [Google Scholar] [CrossRef]
- Zeng, X.; Li, P.; Chen, X.; Kang, Y.; Xie, Y.; Li, X.; Xie, T.; Zhang, Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int. J. Biol. Macromol. 2019, 126, 867–876. [Google Scholar] [CrossRef]
- Synytsya, A.; Novak, M. Structural diversity of fungal glucans. Carbohydr. Polym. 2013, 92, 792–809. [Google Scholar] [CrossRef]
- Synytsya, A.; Novak, M. Structural analysis of glucans. Ann. Transl. Med. 2014, 2, 17. [Google Scholar]
- Chen, Y.; Ou, X.; Yang, J.; Bi, S.; Peng, B.; Wen, Y.; Song, L.; Li, C.; Yu, R.; Zhu, J. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int. J. Biol. Macromol. 2020, 158, 1204–1215. [Google Scholar] [CrossRef]
- Yi, P.; Li, N.; Wan, J.B.; Zhang, D.; Li, M.; Yan, C. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense. Carbohydr. Polym. 2015, 121, 183–189. [Google Scholar] [CrossRef]
- Chuang, C.M.; Wang, H.E.; Chang, C.H.; Peng, C.C.; Ker, Y.B.; Lai, J.E.; Chen, K.C.; Peng, R.Y. Sacchachitin, a novel chitin-polysaccharide conjugate macromolecule present in Ganoderma lucidum: Purification, composition, and properties. Pharm. Biol. 2013, 51, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Nie, S.P.; Yin, J.Y.; Wang, Y.X.; Xie, M.Y. Structural characterization of a heterogalactan purified from fruiting bodies of Ganoderma atrum. Food Hydrocol. 2014, 36, 339–347. [Google Scholar] [CrossRef]
- Nara, K.; Kato, Y. Structural characterization of a heterogalactan from antler-shaped Ganoderma lucidum. J. Appl. Glycosci. 2015, 62, 149–151. [Google Scholar] [CrossRef] [Green Version]
- Tel-Çayan, G.; Muhammad, A.; Deveci, E.; Duru, M.E.; Öztürk, M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. Int. J. Biol. Macromol. 2020, 165, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Yang, D. Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi (Ganoderma lucidum). Food Hydrocol. 2007, 21, 739–746. [Google Scholar] [CrossRef]
- Lu, J.; He, R.; Sun, P.; Zhang, F.; Linhardt, R.J.; Zhang, A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 2020, 150, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Sohretoglu, D.; Huang, S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents Med. Chem. 2018, 18, 667–674. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, J.; Zhang, T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021, 340, 127933. [Google Scholar] [CrossRef]
- Hennicke, F.; Cheikh-Ali, Z.; Liebisch, T.; Maciá-Vicente, J.G.; Bode, H.B.; Piepenbring, M. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 2016, 127, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Eo, S.K.; Kim, Y.S.; Lee, C.K.; Han, S.S. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J. Ethnopharmacol. 1999, 68, 175–181. [Google Scholar] [CrossRef]
- Eo, S.K.; Kim, Y.S.; Lee, C.K.; Han, S.S. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 2000, 72, 475–481. [Google Scholar] [CrossRef]
- Khan, I.; Huang, G.; Li, X.; Leong, W.; Xia, W.; Hsiao, W.W. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Foods 2018, 41, 191–201. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, W.; Sun, M.; Zhang, Z. Hypoglycemic effect of inulin combined with Ganoderma lucidum polysaccharides in T2DM rats. J. Funct. Foods 2019, 55, 381–390. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, Q.; Xie, Y.; Tan, J.; Ding, Y.; Bai, L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ. Food Funct. 2018, 9, 6495–6507. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wu, Q.P.; Cai, W.; Tan, J.B.; Yang, X.B.; Zhang, J.M. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch. Pharm. Res. 2012, 35, 1793–1801. [Google Scholar] [CrossRef]
- Ma, H.T.; Hsieh, J.F.; Chen, S.T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 2015, 114, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Sabulal, B.; George, V.; Antony, K.R.; Janardhanan, K.K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm. 2011, 61, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.J.; Nie, S.P. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 2015, 6, 3205–3217. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ke, B.; Ye, L.; Jin, S.; Jie, F.; Zhao, L.; Wu, X. Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China. Sci. Hortic. 2017, 224, 109–114. [Google Scholar] [CrossRef]
- Sushytskyi, L.; Lukáč, P.; Synytsya, A.; Bleha, R.; Rajsiglová, L.; Capek, P.; Pohl, R.; Vannucci, L.; Čopíková, J.; Kaštánek, P. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr. Polym. 2020, 246, 116588. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Jansson, P.E.; Kenne, L.; Liedgren, H.; Lindberg, B.; Lonngren, J. A practical guide to the methylation analysis of carbohydrates. Chem. Commun. (Stockholm Univ.) 1976, 8, 1–75. [Google Scholar]
- Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
- Purdie, T.; Irvine, J.C. The Alkylation of Sugars. Chem. Soc. Trans. 1903, 83, 1021–1037. [Google Scholar] [CrossRef] [Green Version]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Mokhtari-Hosseini, Z.B.; Hatamian-Zarmi, A.; Mohammadnejad, J.; Ebrahimi-Hosseinzadeh, B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep. Biochem. Biotechnol. 2018, 48, 662–670. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Morales, D.; Gil-Ramírez, A.; Jesus, L.I.; Gilbert-Lopez, B.; Iacominy, M.; Soler-Rivas, C. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydr. Polym. 2017, 156, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qi, J.; Ho, C.T.; Li, B.; Mu, J.; Zhang, Y.; Hu, H.; Mo, W.; Chen, Z.; Xie, Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr. Polym. 2020, 249, 116874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.J.; Nie, S.P.; Chen, Y.; Wang, Y.X.; Xie, M.Y. Structural characterisation of a novel bioactive polysaccharide from Ganoderma atrum. Carbohydr. Polym. 2012, 88, 1047–1054. [Google Scholar] [CrossRef]
- Li, J.; Gu, F.; Cai, C.; Hu, M.; Fan, L.; Hao, J.; Yu, G. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2020, 143, 806–813. [Google Scholar] [CrossRef]
- Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G.I. Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis. Foods 2020, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, M.L.C.; Menezes, T.M.; de Souza, J.R.R.; Ricardo, N.M.; Soares, S.D.A. Structural characterization of β-glucans isolated from Agaricus blazei Murill using NMR and FTIR spectroscopy. Bioact. Carbohydr. Diet. Fibre 2013, 2, 152–156. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonsky, I.; Speváček, J.; Erban, V.; Kovářiková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Galichet, A.; Sockalingum, G.D.; Belarbi, A.; Manfait, M. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol. Let. 2001, 197, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Grdadolnik, J. Saturation effects in FTIR spectroscopy: Intensity of amide I and amide II bands in protein spectra. Acta Chim. Slov. 2003, 50, 777–788. [Google Scholar]
- Synytsya, A.; Čopíková, J.; Matějka, P.; Machovič, V.J. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Jansson, P.E.; Kenne, L.; Widmalm, G. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H-and 13C-NMR data. Carbohydr. Res. 1989, 188, 169–191. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, J.; Zhang, L.; Nakamura, Y.; Norisuye, T. Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polym. J. 1998, 30, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Smiderle, F.R.; Olsen, L.M.; Carbonero, E.R.; Marcon, R.; Baggio, C.H.; Freitas, C.S.; Santos, A.R.S.; Torri, G.; Gorin, P.A.J.; Iacomini, M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: Structure and antinociceptive effect. Phytochemistry 2008, 69, 2731–2736. [Google Scholar] [CrossRef]
- Rosado, F.R.; Carbonero, E.R.; Claudino, R.F.; Tischer, C.A.; Kemmelmeier, C.; Iacomini, M. The presence of partially 3-O-methylated mannogalactan from the fruit bodies of edible basidiomycetes Pleurotus ostreatus ‘florida’ Berk. and Pleurotus ostreatoroseus Sing. FEMS Microbiol. Lett. 2003, 221, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.E.A.; Carbonero, E.R.; Simao, R.C.G.; Kadowaki, M.K.; Sassaki, G.L.; Osaku, C.A.; Gorin, P.A.J.; Iacomini, M. An unusual water-soluble b-glucan from the basidiocarp of the fungus Ganoderma resinaceum. Carbohydr. Polym. 2008, 72, 473–478. [Google Scholar] [CrossRef]
- Bao, X.; Liu, C.; Fang, J.; Li, X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 2001, 332, 67–74. [Google Scholar] [CrossRef]
- Sone, Y.; Okuda, R.; Wada, N.; Kishida, E.; Misaki, A. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the crowing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985, 49, 2641–2653. [Google Scholar]
- Dong, Q.; Wang, Y.; Shi, L.; Yao, J.; Li, J.; Ma, F.; Ding, K. A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 2012, 353, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Ukai, S.; Yokoyama, S.; Hara, C.; Kiho, T. Structure of an alkali-soluble polysaccharide from the fruit body of Ganoderma japonicum Lloyd. Carbohydr. Res. 1982, 105, 237–245. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, L.; Zhang, Y.; Xu, X.; Kennedy, J.F. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr. Polym. 2005, 59, 351–356. [Google Scholar] [CrossRef]
Fraction | Extraction Medium | Yield (% w/w) | Composition |
---|---|---|---|
F1 | Cold water | 0.37 | Polysaccharides, proteins |
F2 | Hot water | 2.33 | Polysaccharides |
F3 | 1 mol L−1 NaOH | 10.57 | Polysaccharides |
F4 | Insoluble residues | 15.59 | Polysaccharides |
Total | All fractions | 28.86 | Polysaccharides, proteins |
Fraction | % N | % C | % H | % S |
---|---|---|---|---|
F1 | 2.44 | 39.47 | 6.25 | 0.13 |
F2 | 0.70 | 39.43 | 6.92 | 0.04 |
F3 | 0.21 | 39.53 | 7.13 | 0.21 |
F4 | 2.08 | 39.47 | 6.44 | 0.07 |
Fraction | Fuc | Man | Glc | Gal | Xyl |
---|---|---|---|---|---|
F1 | 6.7 | 26.5 | 35.6 | 26.9 | 4.3 |
F2 | 3.5 | 4.2 | 86.5 | 1.9 | 3.9 |
F3 | 2.0 | 2.7 | 92.2 | 0.0 | 3.1 |
F4 | 3.6 | 0.0 | 92.4 | 0.0 | 4.0 |
Sugar Derivative | Ratio (mol %) | Mode of Linkage |
---|---|---|
2,3,4,6-Me4-Man | Traces | Manp-(1→ |
2,3,4,6-Me4-Glc | 22.1 | Glcp-(1→ |
2,4-Me2-Fuc | 1.1 | →3)-Fucp-(1→ |
2,3,4,6-Me4-Gal | 0.5 | Galp-(1→ |
2,3-Me2-Xyl | 0.2 | →4)-Xyl-(1→ |
2,4,6-Me3-Glc | 26.8 | →3)-Glcp-(1→ |
2,3,4-Me3-Glc | 12.8 | →6)-Glcp-(1→ |
2,3,6-Me3-Glc | 17.6 | →4)-Glcp-(1→ |
2,3,4-Me3-Gal | 1.6 | →6)-Galp-(1→ |
2,6-Me2-Man | 0.4 | →3,4)-Manp1→ |
2,4-Me2-Glc | 14.2 | →3,6)-Glcp-(1→ |
2,3-Me2-Man | 1.9 | →4,6)-Manp-(1→ |
3,4-Me2-Man | 0.6 | →2,6)-Manp-(1→ |
Fraction/Sub-Fraction | Weight (mg) | Yield (% w/w) | |
---|---|---|---|
F2 | Enter | 66.67 | |
F2a | Minor | 0.13 | 0.19 |
F2b | Major | 32.54 | 48.81 |
F2c | Major | 11.73 | 17.59 |
Fraction | Unit | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6/C6 | O2H | O4H | O6H | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1, F2 | A | →6)-α-Galp-(1→ | 4.95 | 3.82 | 3.85 | 4.02 | 4.14 | 3.68; 3.85 | |||
98.8 | 68.9 | 70.3 | 70.4 | 69.5 | 67.3 | ||||||
A’ | →6)-α-Galp-(1→ | 5.00 | 3.83 | 3.85 | 4.02 | 4.14 | 3.68; 3.85 | ||||
98.8 | 68.9 | 70.3 | 70.4 | 69.5 | 67.3 | ||||||
B | β-Manp-(1→2 | 5.10 | 4.04 | 3.68 | 3.60 | 3.33 | 3.70; 3.87 | ||||
102.9 | 70.5 | 74.2 | 68.1 | 76.5 | 61.9 | ||||||
B’ | β-Manp-(1→2 | 5.02 | 4.03 | 3.68 | 3.60 | 3.33 | 3.68; 3.85 | ||||
102.9 | 70.5 | 74.2 | 68.1 | 76.5 | 61.9 | ||||||
C | →2,6)-α-Galp-(1→ | 5.08 | 3.92 | 4.00 | 4.02 | 4.14 | 3.68; 3.85 | ||||
101.6 | 78.48 | 67.7 | 70.4 | 69.5 | 67.3 | ||||||
C’ | →2,6)-α-Galp-(1→ | 5.22 | 4.06 | 3.99 | 4.02 | 4.14 | 3.68; 3.85 | ||||
101.2 | 78.90 | 67.8 | 70.4 | 69.5 | 67.3 | ||||||
D | β-Glcp-(1→ | 4.47 | 3.30 | 3.48 | 3.38 | 3.61 | 3.78; 3.94 | ||||
103.6 | 74.1 | 76.7 | 70.6 | 76.2 | 61.8 | ||||||
D’ | →6)-β-Glcp-(1→ | 4.49 | 3.34 | 3.48 | 3.37 | 3.51 | 3.85; 4.15 | ||||
103.6 | 74.3 | 76.7 | 70.6 | 76.5 | 69.3 | ||||||
E | →3)-β-Glcp-(1→ | 4.73 | 3.54 | 3.74 | 3.48 | 3.65 | 3.70; 3.87 | ||||
103.2 | 73.4 | 85.3 | 69.2 | 79.6 | 61.8 | ||||||
E’ | →3,6)-β-Glcp-(1→ | 4.52 | 3.50 | 3.70 | 3.41 | 3.72 | 3.85; 4.15 | ||||
103.1 | 76.5 | 85.3 | 70.6 | 74.2 | 69.3 | ||||||
F | →4)-β-Glcp-(1→ | 4.71 | 3.39 | 3.63 | 3.63 | 3.60 | 3.78; 3.94 | ||||
103.2 | 76.6 | 76.5 | 79.7 | 76.2 | 61.8 | ||||||
F’ | →4)-β-Glcp-(1→ | 4.68 | 3.37 | 3.62 | 3.63 | 3.60 | 3.78; 3.94 | ||||
103.3 | 74.5 | 76.5 | 79.7 | 76.2 | 61.8 | ||||||
G | →4)-α-Glcp-(1→ | 5.34 | 3.60 | 3.92 | 3.53 | 3.80 | 3.87 | ||||
100.3 | 71.5 | 73.3 | 78.8 | 72.6 | 60.7 | ||||||
H | →3)-α-Fucp-(1→ | 4.12 | 1.20 | ||||||||
16.2 | |||||||||||
F3 | A | →3)-β-Glcp-(1→ | 4.76 | 3.56 | 3.73 | 3.48 | 3.51 | 3.73; 3.96 | 5.12 | 4.66 | 4.54 |
103.6 | 73.4 | 86.9 | 69.1 | 79.1 | 61.7 | ||||||
B | →3)-β-Glcp-(1→ | 5.31 | 3.67 | 3.88 | 3.67 | 4.07 | 3.76; 3.88 | 5.07 | 4.67 | ||
100.3 | 71.3 | 83.7 | 69.0 | 72.8 | 61.6 | ||||||
C | β-Glcp-(1→6 | 4.47 | 3.26 | 3.44 | 3.34 | 3.38 | 3.71; 3.96 | 4.63 | |||
103.6 | 73.9 | 76.9 | 71.2 | 77.2 | 61.7 | ||||||
D | →3,6)-β-Glcp-(1→ | 4.76 | 3.53 | 3.72 | 3.57 | 3.77 | 3.83; 4.32 | 4.70 | |||
103.6 | 73.7 | 86.9 | 69.1 | 76.8 | 69.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleha, R.; Třešnáková, L.; Sushytskyi, L.; Capek, P.; Čopíková, J.; Klouček, P.; Jablonský, I.; Synytsya, A. Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure. Polymers 2022, 14, 255. https://doi.org/10.3390/polym14020255
Bleha R, Třešnáková L, Sushytskyi L, Capek P, Čopíková J, Klouček P, Jablonský I, Synytsya A. Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure. Polymers. 2022; 14(2):255. https://doi.org/10.3390/polym14020255
Chicago/Turabian StyleBleha, Roman, Lucie Třešnáková, Leonid Sushytskyi, Peter Capek, Jana Čopíková, Pavel Klouček, Ivan Jablonský, and Andriy Synytsya. 2022. "Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure" Polymers 14, no. 2: 255. https://doi.org/10.3390/polym14020255
APA StyleBleha, R., Třešnáková, L., Sushytskyi, L., Capek, P., Čopíková, J., Klouček, P., Jablonský, I., & Synytsya, A. (2022). Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure. Polymers, 14(2), 255. https://doi.org/10.3390/polym14020255