Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Silicone Rubber-Based Ablative Composites
2.3. Characterization
2.3.1. Mechanical and Physical Properties
2.3.2. Ablation Tests
2.3.3. Thermal Stability and Thermal Conductivity Tests
2.3.4. Morphology Observation
3. Results and Discussion
3.1. Dispersion, Mechanical, and Physical Properties of the Composites
3.2. Thermal Properties of the Composites
3.3. Ablation Resistance and Thermal Insulation of the Composites
3.4. Component and Morphological of the Ceramic Layer
3.5. Ablation Mechanism of the Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Liu, K.; Guo, M.; Liu, Y.; Wang, J.; Lv, X. Ablation and erosion characteristics of EPDM composites under SRM operating conditions. Compos. Part A 2018, 109, 392–401. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Hoa, S.V. Thermal insulation by heat resistant polymers for solid rocket motor insulation. J. Compos. Mater. 2011, 46, 1549–1559. [Google Scholar] [CrossRef]
- Koo, J.H.; Miller, M.J.; Weispfenning, J.; Blackmon, C. Silicone Polymer Composites for Thermal Protection of Naval Launching System. J. Spacecr. Rocket. 2011, 48, 904–919. [Google Scholar] [CrossRef]
- Soo Kim, E.; Lee, T.H.; Shin, S.H.; Yoon, J.-S. Effect of incorporation of carbon fiber and silicon carbide powder into silicone rubber on the ablation and mechanical properties of the silicone rubber-based ablation material. J. Appl. Polym. Sci. 2011, 120, 831–838. [Google Scholar] [CrossRef]
- Li, K.-Z.; Shen, X.-T.; Li, H.-J.; Zhang, S.-Y.; Feng, T.; Zhang, L.-L. Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor. Carbon 2011, 49, 1208–1215. [Google Scholar] [CrossRef]
- Natali, M.; Kenny, J.M.; Torre, L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Prog. Mater Sci. 2016, 84, 192–275. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Xi, K.; Liu, Y.; Ji, J. Effect of multi-walled carbon nanotubes on thermal stability and ablation properties of EPDM insulation materials for solid rocket motors. Acta Astronaut. 2019, 159, 508–516. [Google Scholar] [CrossRef]
- Natali, M.; Rallini, M.; Puglia, D.; Kenny, J.; Torre, L. EPDM based heat shielding materials for Solid Rocket Motors: A comparative study of different fibrous reinforcements. Polym. Degrad. Stab. 2013, 98, 2131–2139. [Google Scholar] [CrossRef]
- Johnson, E.P. The elimination of methyl chloroform solvent used for the cleaning of propellant contaminated tooling during the production of the space shuttle solid rocket motors. NASA Conf. Publ. 1997, 3349, 679–691. [Google Scholar]
- Yu, L.; Zhou, S.; Zou, H.; Liang, M. Thermal stability and ablation properties study of aluminum silicate ceramic fiber and acicular wollastonite filled silicone rubber composite. J. Appl. Polym. Sci. 2014, 131, 39700–39706. [Google Scholar] [CrossRef]
- Torre, L.; Kenny, J.M.; Maffezzoli, A.M. Degradation behaviour of a composite material for thermal protection systems part I - Experimental characterization. J. Mater. Sci. 1998, 33, 3137–3143. [Google Scholar] [CrossRef]
- Shi, Y.-A.; Zha, B.-L.; Su, Q.-D.; Jia, X.-D. Effects of Oxygen Content on the Ablation Behavior of Silicone Rubber-Based Insulation Material. Int. J. Aerosp. Eng. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhang, W.; Jiang, B. Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceram. Int. 2013, 39, 1575–1581. [Google Scholar] [CrossRef]
- Mei, Q.; Wang, H.; Chen, X.; Wang, Y.; Huang, Z. A Novel Zirconium Modified Arylacetylene Resin: Preparation, Thermal Properties and Ceramifiable Mechanism. Polymers 2020, 12, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Zhang, W.; Jiang, B.; Guo, Y. Silicone rubber ablative composites improved with zirconium carbide or zirconia. Compos. Part A 2013, 44, 70–77. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Li, Y.; Yin, Z.; Zhi, Y.; Gao, J. Ablative properties and mechanisms of hot vulcanised silicone rubber (HVSR) composites containing different fillers. Plast. Rubber Compos. 2016, 45, 430–435. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.; Qin, Y.; Wang, H.; Shi, M. Effects of Zirconium Silicide on the Vulcanization, Mechanical and Ablation Resistance Properties of Ceramifiable Silicone Rubber Composites. Polymers 2020, 12, 496. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Xi, Y.; Kwon, Y. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane. J. Nanosci. Nanotechnol. 2016, 16, 1928–1933. [Google Scholar] [CrossRef]
- Li, B.; He, C.; Cao, M.; Ren, Y.; Wang, J.; Lu, W. Highly branched phenolic resin-grafted silicone rubber copolymer for high efficiency ablation thermal protection coating. J. Appl. Polym. Sci. 2019, 137, 48353. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Li, J.; Liu, Y. Ablation Behavior of Silicone Rubber-Benzoxazine-Based Composites for Ultra-High Temperature Applications. Polymers 2019, 11, 1844. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yu, L.; Luo, W.; Chen, Y.; Zou, H.; Liang, M. Ablation properties of aluminum silicate ceramic fibers and calcium carbonate filled silicone rubber composites. J. Appl. Polym. Sci. 2015, 132, 41619–41626. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, F.; Huang, Z.; Dai, J.; Shi, M. Improved Ablation Resistance of Silicone Rubber Composites by Introducing Montmorillonite and Silicon Carbide Whisker. Materials 2016, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; He, J.; Yang, R. The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubber insulating composites. Polym. Degrad. Stab. 2016, 125, 140–147. [Google Scholar] [CrossRef]
- Li, R.; Zhou, C.; Yu, L.; Chen, Y.; Zou, H.; Liang, M. Study on the thermal stability and ablation properties of metallic oxide-filled silicone rubber composites using uniform design method. J. Polym. Eng. 2016, 36, 805–811. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Z.; Li, X.; Meng, Q.; Zheng, Y. An excellent ablative composite based on PBO reinforced EPDM. Polym. Bull. 2010, 64, 607–622. [Google Scholar] [CrossRef]
- Yin, S.; Ma, L.; Wu, L.Z. Carbon fiber composite lattice structure filled with silicone rubber. Procedia Eng. 2011, 10, 3191–3194. [Google Scholar] [CrossRef] [Green Version]
- Bassyouni, M.; Iqbal, N.; Iqbal, S.S.; Abdel-hamid, S.M.S.; Abdel-Aziz, M.H.; Javaid, U.; Khan, M.B. Ablation and thermo-mechanical investigation of short carbon fiber impregnated elastomeric ablatives for ultrahigh temperature applications. Polym. Degrad. Stab. 2014, 110, 195–202. [Google Scholar] [CrossRef]
- Tang, S.; Hu, C. Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review. J. Mater. Sci. Technol. 2017, 33, 117–130. [Google Scholar] [CrossRef]
- Ji, Y.; Han, S.; Xia, L.; Li, C.; Wu, H.; Guo, S.; Yan, N.; Li, H.; Luan, T. Synergetic effect of aramid fiber and carbon fiber to enhance ablative resistance of EPDM-based insulators via constructing high-strength char layer. Compos. Sci. Technol. 2021, 201, 108494. [Google Scholar] [CrossRef]
- Cheng, H.; Hong, C.; Zhang, X.; Xue, H. Lightweight carbon-bonded carbon fiber composites with quasi-layered and network structure. Mater. Des. 2015, 86, 156–159. [Google Scholar] [CrossRef]
- Daniel, A.; Gudivada, G.; Srikanth, I.; Kandasubramanian, B. Effect of Zirconium Diboride Incorporation on Thermal Stability and Ablation Characteristics of Carbon Fiber-Reinforced Resorcinol–Formaldehyde Composites. Ind. Eng. Chem. Res. 2019, 58, 18623–18634. [Google Scholar] [CrossRef]
- Ding, J.; Yang, T.; Huang, Z.; Qin, Y.; Wang, Y. Thermal stability and ablation resistance, and ablation mechanism of carbon–phenolic composites with different zirconium silicide particle loadings. Compos. Part B 2018, 154, 313–320. [Google Scholar] [CrossRef]
- Amirsardari, Z.; Mehdinavaz Aghdam, R.; Salavati-Niasari, M.; Shakhesi, S. Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles. Compos. Part B 2015, 76, 174–179. [Google Scholar] [CrossRef]
Samples | PDMS | PMPS | DBPMH | SiO2 | ZrB2 | B4C | CFs |
---|---|---|---|---|---|---|---|
SF-0.5 | 50 | 50 | 0.5 | 30 | 17.5 | 2.5 | 10, 0.5 mm |
SF-1 | 50 | 50 | 0.5 | 30 | 17.5 | 2.5 | 10, 1 mm |
SF-3 | 50 | 50 | 0.5 | 30 | 17.5 | 2.5 | 10, 3 mm |
SF-6 | 50 | 50 | 0.5 | 30 | 17.5 | 2.5 | 10, 6 mm |
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Hardness (Share A) | Density (g/cm3) |
---|---|---|---|---|
SF-0.5 | 3.30 ± 0.06 | 421.9 ± 7.9 | 78.7 ± 1.1 | 1.281 ± 0.002 |
SF-1 | 4.06 ± 0.37 | 224.3 ± 5.6 | 82.9 ± 1.6 | 1.279 ± 0.004 |
SF-3 | 4.39 ± 0.50 | 184.1 ± 5.9 | 85.7 ± 1.4 | 1.275 ± 0.006 |
SF-6 | 5.60 ± 0.95 | 35.0 ± 9.8 | 89.8 ± 1.1 | 1.267 ± 0.004 |
Samples | Tmax, b (°C) | Thermal Conductivity (W/mK) |
---|---|---|
SF-0.5 | 117.7 ± 0.9 | 0.3089 ± 0.0011 |
SF-1 | 109.0 ± 1.5 | 0.3178 ± 0.0035 |
SF-3 | 107.9 ± 1.1 | 0.3211 ± 0.0052 |
SF-6 | 115.2 ± 1.8 | 0.3401 ± 0.0038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Han, S.; Chen, Z.; Wu, H.; Guo, S.; Yan, N.; Li, H.; Luan, T. Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites. Polymers 2022, 14, 268. https://doi.org/10.3390/polym14020268
Ji Y, Han S, Chen Z, Wu H, Guo S, Yan N, Li H, Luan T. Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites. Polymers. 2022; 14(2):268. https://doi.org/10.3390/polym14020268
Chicago/Turabian StyleJi, Yuan, Shida Han, Zhiheng Chen, Hong Wu, Shaoyun Guo, Ning Yan, Hongyan Li, and Tao Luan. 2022. "Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites" Polymers 14, no. 2: 268. https://doi.org/10.3390/polym14020268
APA StyleJi, Y., Han, S., Chen, Z., Wu, H., Guo, S., Yan, N., Li, H., & Luan, T. (2022). Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites. Polymers, 14(2), 268. https://doi.org/10.3390/polym14020268