Fire Performance of FRP-RC Flexural Members: A Numerical Study
Abstract
:1. Introduction
2. Procedure of the FE Model
2.1. Modeling Procedure
2.2. Thermal Properties of Concrete and FRP Bars
2.3. Definitions of the Boundary Conditions for Heat Transfer Analysis
3. Modeling of Concrete and FRP Bars at High Temperatures
3.1. Concrete
3.2. FRP Bars
4. Modeling of the Bond Behavior at High Temperatures
5. Element Type, Interface, and Boundary Conditions
6. Results and Discussion
6.1. Hajiloo et al.’s Tests
6.1.1. Temperature Responses
6.1.2. Structural Performance
6.1.3. Local Interfacial Slip Responses
6.2. Nigro et al.’s Tests
6.2.1. Temperature Responses
6.2.2. Structural Performance
6.2.3. Local Interfacial Slip Responses
7. Conclusions
- (1)
- The proposed FE model has good accuracy in predicting the thermal and structural responses of FRP-RC flexural members under fire exposure. The constitutive models used to define the thermal and mechanical properties of concrete and FRP bars at high temperatures are reliable. The temperature predictions of the proposed FE model are very similar to the measured results, with a maximum deviation of about 10% during the entire fire test.
- (2)
- The perfect bond consideration of the FRP bar-to-concrete interface at high temperatures often yields less accurate predictions of midspan deflection responses. Thus, proper consideration of the local bond–slip behavior of the FRP bar-to-concrete interface at high temperatures is required for accurately predicting the midspan deflection responses of FRP-RC flexural members exposed to fire.
- (3)
- The consideration of the local bond–slip behavior also gives detailed information on the interfacial slip responses at the FRP bar-to-concrete interface at high temperatures during a fire, which can reveal the concrete cracking pattern and failure mode of the tested member under fire exposure. The predicted maximum interfacial slips of the FRP bars near the end of the fire test are almost 20 mm.
- (4)
- The proposed FE model can accurately predict the anchorage failure of FRP bars in the FRP-RC flexural member during fire exposure, which is a typical failure mode in the existing fire tests in the literature. The previous numerical studies based on a perfect bond consideration cannot provide a reliable prediction for this failure mode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakis, C.E.; Bank, L.C.; Asce, F.; Brown, V.L.; Asce, M.; Cosenza, E.; Davalos, J.F.; Asce, A.M.; Lesko, J.J.; Machida, A.; et al. Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Gravina, R.J.; Li, J.; Smith, S.T.; Visintin, P. Environmental Durability of FRP Bar-to-Concrete Bond: Critical Review. J. Compos. Constr. 2020, 24, 03120001. [Google Scholar] [CrossRef]
- Bellakehal, H.; Zaidi, A.; Masmoudi, R.; Bouhicha, M. Behavior of FRP Bars-Reinforced Concrete Slabs under Temperature and Sustained Load Effects. Polymers 2014, 6, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Ghahari, S.A.; Assi, L.N.; Alsalman, A.; Alyamaç, K.E. Fracture Properties Evaluation of Cellulose Nanocrystals Cement Paste. Materials 2020, 13, 2507. [Google Scholar] [CrossRef] [PubMed]
- ACI (American Concrete Institute). 440.1R-15, Guide for the Design and Construction of Concrete Reinforced with FRP Bars; ACI (American Concrete Institute): Farmington Hills, MI, USA, 2015. [Google Scholar]
- CSA (Canadian Standards Association). CSA-S806, Design and Construction of Building Components with Fiber-Reinforced Polymers; CSA (Canadian Standards Association): Mississauga, ON, Canada, 2012. [Google Scholar]
- Wang, Y.; Ren, Z.; Huang, Z.; Gao, W.; Zhong, B.; Bu, Y.; Huang, Y.; Zhang, Y.; Yuan, G.; Ma, S. Experimental and numerical studies of six small-scale continuous concrete slabs subjected to travelling fires. Eng. Struct. 2021, 236, 112069. [Google Scholar] [CrossRef]
- Song, J.; Gao, W.-Y.; Ouyang, L.-J.; Zeng, J.-J.; Yang, J.; Liu, W.-D. Compressive behavior of heat-damaged square concrete prisms confined with basalt fiber-reinforced polymer jackets. Eng. Struct. 2021, 242, 112504. [Google Scholar] [CrossRef]
- Ouyang, L.-J.; Wei, X.-X.; Ding, B.; Gao, W.-Y. Effective Strain of BFRP for Confined Heat-Damaged Concrete Cylinders. Front. Mater. 2021, 8, 729781. [Google Scholar] [CrossRef]
- Ouyang, L.-J.; Chai, M.-X.; Song, J.; Hu, L.-L.; Gao, W.-Y. Repair of thermally damaged concrete cylinders with basalt fiber-reinforced polymer jackets. J. Build. Eng. 2021, 44, 102673. [Google Scholar] [CrossRef]
- Katz, A.; Berman, N.; Bank, L. Effect of High Temperature on Bond Strength of FRP Rebars. J. Compos. Constr. 1999, 3, 73–81. [Google Scholar] [CrossRef]
- Solyom, S.; Di Benedetti, M.; Guadagnini, M.; Balázs, G.L. Effect of temperature on the bond behaviour of GFRP bars in concrete. Compos. Part B Eng. 2020, 183, 107602. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F. Post-fire residual properties of GFRP reinforced concrete slabs: A holistic investigation. Compos. Struct. 2018, 201, 398–413. [Google Scholar] [CrossRef]
- Rafi, M.M.; Nadjai, A.; Ali, F. Finite Element Modeling of Carbon Fiber-Reinforced Polymer Reinforced Concrete Beams under Elevated Temperatures. ACI Struct. J. 2008, 105, 701–710. [Google Scholar] [CrossRef]
- Wang, K.; Young, B.; Smith, S. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures. Eng. Struct. 2011, 33, 2154–2161. [Google Scholar] [CrossRef]
- Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Gao, W.-Y.; Zeng, J.-J. Mechanical behavior of large-rupture-strain (LRS) polyethylene naphthalene fiber bundles at different strain rates and temperatures. Constr. Build. Mater. 2021, 297, 123786. [Google Scholar] [CrossRef]
- Dai, J.-G.; Gao, W.-Y.; Teng, J.G. Bond–slip Model for FRP Laminates Externally Bonded to Concrete at Elevated Temperature. J. Compos. Constr. 2013, 17, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.A.; Biscaia, H. Degradation of bond between FRP and RC beams. Compos. Struct. 2008, 85, 164–174. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Teng, J.G.; Dai, J.-G. Effect of Temperature Variation on the Full-Range Behavior of FRP-to-Concrete Bonded Joints. J. Compos. Constr. 2012, 16, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.; Gao, W.-Y.; Yang, J. Effect of temperature variations on interfacial debonding of FRP-plated beams: A coupled mix-mode cohesive zone modeling. IOP Conf. Ser. Mater. Sci. Eng. 2020, 784, 012003. [Google Scholar] [CrossRef]
- Leone, M.; Matthys, S.; Aiello, M.A. Effect of elevated service temperature on bond between FRP EBR systems and concrete. Compos. Part B Eng. 2009, 40, 85–93. [Google Scholar] [CrossRef]
- Firmo, J.; Correia, J.; Pitta, D.; Tiago, C.; Arruda, M. Experimental characterization of the bond between externally bonded reinforcement (EBR) CFRP strips and concrete at elevated temperatures. Cem. Concr. Compos. 2015, 60, 44–54. [Google Scholar] [CrossRef]
- Guo, D.; Gao, W.-Y.; Fernando, D.; Dai, J.-G. Effect of temperature variation on the plate-end debonding of FRP-strengthened beams: A theoretical study. Adv. Struct. Eng. 2022, 25, 290–305. [Google Scholar] [CrossRef]
- Jia, D.-G.; Gao, W.-Y.; Duan, D.-X.; Yang, J.; Dai, J.-G. Full-range behavior of FRP-to-concrete bonded joints subjected to combined effects of loading and temperature variation. Eng. Fract. Mech. 2021, 254, 107928. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J. Analysis of Mode II debonding behavior of fiber-reinforced polymer-to-substrate bonded joints subjected to combined thermal and mechanical loading. Eng. Fract. Mech. 2015, 136, 241–264. [Google Scholar] [CrossRef]
- Guo, D.; Gao, W.-Y.; Dai, J.-G. Effects of temperature variation on intermediate crack-induced debonding and stress intensity factor in FRP-retrofitted cracked steel beams: An analytical study. Compos. Struct. 2022, 279, 114776. [Google Scholar] [CrossRef]
- Joshani, M.; Koloor, S.; Abdullah, R. Damage Mechanics Model for Fracture Process of Steel-Concrete Composite Slabs. Appl. Mech. Mater. 2012, 165, 339–345. [Google Scholar] [CrossRef]
- Hawileh, R.; Naser, M.Z.; Abdalla, J.A. Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Compos. Part B Eng. 2013, 45, 1722–1730. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J.G. Simple Method for Predicting Temperatures in Insulated, FRP-Strengthened RC Members Exposed to a Standard Fire. J. Compos. Constr. 2015, 19, 04015013. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J.G. Fire resistance design of un-protected FRP-strengthened RC beams. Mater. Struct. 2016, 49, 5357–5371. [Google Scholar] [CrossRef]
- Dong, K.; Hu, K.; Gao, W.-Y. Fire Behavior of Full-Scale CFRP-Strengthened RC Beams Protected with Different Insulation Systems. J. Asian Arch. Build. Eng. 2016, 15, 581–588. [Google Scholar] [CrossRef]
- Firmo, J.; Correia, J. Fire behaviour of thermally insulated RC beams strengthened with EBR-CFRP strips: Experimental study. Compos. Struct. 2015, 122, 144–154. [Google Scholar] [CrossRef]
- Liu, F.; Wu, B.; Wei, D. Failure modes of reinforced concrete beams strengthened with carbon fiber sheet in fire. Fire Saf. J. 2009, 44, 941–950. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J.G. Three-Level Fire Resistance Design of FRP-Strengthened RC Beams. J. Compos. Constr. 2018, 22, 05018001. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Hu, K.-X.; Lu, Z.-D. Fie Resistance Experiments of Insulated CFRP Strengthened Reinforced Concrete Beams. China Civil Eng. J. 2010, 43, 15–23. https://doi.org/CNKI:SUN:TMGC.0.2010-03-008. (In Chinese) [Google Scholar]
- Palmieri, A.; Matthys, S.; Taerwe, L. Experimental investigation on fire endurance of insulated concrete beams strengthened with near surface mounted FRP bar reinforcement. Compos. Part B Eng. 2012, 43, 885–895. [Google Scholar] [CrossRef]
- Williams, B.; Kodur, V.; Green, M.; Bisby, L. Fire Endurance of Fiber-Reinforced Polymer Strengthened Concrete T-Beams. ACI Struct. J. 2008, 105, 60–67. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, G.; Zhang, L.; Zhang, J.; Hui, D. Experimental study on the fire resistance of RC beams strengthened with near-surface-mounted high-Tg BFRP bars. Compos. Part B Eng. 2014, 60, 680–687. [Google Scholar] [CrossRef]
- Dai, J.-G.; Gao, W.-Y.; Teng, J.G. Finite Element Modeling of Insulated FRP-Strengthened RC Beams Exposed to Fire. J. Compos. Constr. 2015, 19, 04014046. [Google Scholar] [CrossRef]
- Ahmed, A.; Kodur, V. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Compos. Part B Eng. 2011, 42, 226–237. [Google Scholar] [CrossRef]
- Firmo, J.P.; Arruda, M.; Correia, J.; Rosa, I.C.M. Three-dimensional finite element modelling of the fire behaviour of insulated RC beams strengthened with EBR and NSM CFRP strips. Compos. Struct. 2018, 183, 124–136. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F.; Noël, M.; Bénichou, N.; Sultan, M. Fire tests on full-scale FRP reinforced concrete slabs. Compos. Struct. 2017, 179, 705–719. [Google Scholar] [CrossRef]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Fire resistance of concrete slabs reinforced with FRP bars. Part I: Experimental investigations on the mechanical behavior. Compos. Part B Eng. 2011, 42, 1739–1750. [Google Scholar] [CrossRef]
- Rosa, I.C.; Santos, P.; Firmo, J.P.; Correia, J.R. Fire behaviour of concrete slab strips reinforced with sand-coated GFRP bars. Compos. Struct. 2020, 244, 112270. [Google Scholar] [CrossRef]
- Kodur, V.K.; Bisby, L.A.; Foo, S.H. Thermal Behavior of Fire-Exposed Concrete Slabs Reinforced with Fiber-Reinforced Polymer Bars. ACI Struct. J. 2005, 102, 799–807. [Google Scholar] [CrossRef]
- Rafi, M.M.; Nadjai, A. Fire Tests of Hybrid and Carbon Fiber-Reinforced Polymer Bar Reinforced Concrete Beams. ACI Mater. J. 2011, 108, 252–260. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F. GFRP reinforced concrete slabs in fire: Finite element modelling. Eng. Struct. 2019, 183, 1109–1120. [Google Scholar] [CrossRef]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Fire resistance of concrete slabs reinforced with FRP bars. Part II: Experimental results and numerical simulations on the thermal field. Compos. Part B Eng. 2011, 42, 1751–1763. [Google Scholar] [CrossRef]
- Bilotta, A.; Compagnone, A.; Esposito, L.; Nigro, E. Structural behaviour of FRP reinforced concrete slabs in fire. Eng. Struct. 2020, 221, 111058. [Google Scholar] [CrossRef]
- Rafi, M.M.; Nadjai, A. Numerical modelling of carbon fibre-reinforced polymer and hybrid reinforced concrete beams in fire. Fire Mater. 2013, 37, 374–390. [Google Scholar] [CrossRef]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire. Compos. Part B Eng. 2014, 58, 103–112. [Google Scholar] [CrossRef]
- Rafi, M.M.; Nadjai, A. Parametric finite element analysis of FRP reinforced concrete beams in fire and design guidelines. Fire Mater. 2014, 38, 293–311. [Google Scholar] [CrossRef]
- Masmoudi, A.; Masmoudi, R.; Ben Ouezdou, M. Thermal effects on GFRP rebars: Experimental study and analytical analysis. Mater. Struct. 2010, 43, 775–788. [Google Scholar] [CrossRef]
- Galati, N.; Nanni, A.; Dharani, L.R.; Focacci, F.; Aiello, M.A. Thermal effects on bond between FRP rebars and concrete. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1223–1230. [Google Scholar] [CrossRef]
- Katz, A.; Berman, N. Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete. Cem. Concr. Compos. 2000, 22, 433–443. [Google Scholar] [CrossRef]
- Li, C.; Gao, D.; Wang, Y.; Tang, J. Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete. Constr. Build. Mater. 2017, 141, 44–51. [Google Scholar] [CrossRef]
- Abbasi, A.; Hogg, P.J. Temperature and environmental effects on glass fibre rebar: Modulus, strength and interfacial bond strength with concrete. Compos. Part B Eng. 2005, 36, 394–404. [Google Scholar] [CrossRef]
- Hamad, R.J.; Johari, M.M.; Haddad, R.H. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures. Constr. Build. Mater. 2017, 142, 521–535. [Google Scholar] [CrossRef]
- Nigro, E.; Bilotta, A.; Cefarelli, G.; Manfredi, G.; Cosenza, E. Performance under Fire Situations of Concrete Members Reinforced with FRP Rods: Bond Models and Design Nomograms. J. Compos. Constr. 2012, 16, 395–406. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J.-G. Fire resistance of RC beams under design fire exposure. Mag. Concr. Res. 2017, 69, 402–423. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Dai, J.-G.; Teng, J.; Chen, G. Finite element modeling of reinforced concrete beams exposed to fire. Eng. Struct. 2013, 52, 488–501. [Google Scholar] [CrossRef] [Green Version]
- CEN (European Committee for Standardization). Eurocode 2-Design of Concrete Structures. Part 1–2: General Rules—Structural Fire Design; European Standard: Pilsen, Czech Republic, 2004. [Google Scholar]
- Griffis, C.; Masumura, R.; Chang, C. Thermal Response of Graphite Epoxy Composite Subjected to Rapid Heating. J. Compos. Mater. 1981, 15, 427–442. [Google Scholar] [CrossRef]
- CEN (European Committee for Standardization). Eurocode 1-Actions on Structures. Part 1–2: General Actions—Actions on Structures Exposed to Fire; European Standard: Pilsen, Czech Republic, 2002. [Google Scholar]
- Gao, W.; Dai, J.; Teng, J. Simple Method for Predicting Temperatures in Reinforced Concrete Beams Exposed to a Standard Fire. Adv. Struct. Eng. 2014, 17, 573–589. [Google Scholar] [CrossRef]
- ABAQUS. ABAQUS Standard User’s Manual. Version 6.14, Vol. I–III; Hibbitt, Karlsson & Sorensen, Inc.: Pawtucket, RI, USA, 2014. [Google Scholar]
- Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Wang, Y.; Kodur, V. Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature. Cem. Concr. Compos. 2005, 27, 864–874. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.; Gales, J. Mechanical properties of GFRP reinforcing bars at high temperatures. Constr. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- Reid, E.R.; Bilotta, A.; Bisby, L.A.; Nigro, E. Mechanical Properties of Fibre Reinforced Polymer Reinforcement for Concrete at High Temperature. In Proceedings of the 8th International Conference on Structures in Fire, Shanghai, China, 11–13 June 2014; Tongji University Press: Shanghai, China; pp. 1227–1234. [Google Scholar]
- Prakhya, G.K.V.; Morley, C.T. Tension-Stiffening and Moment-Curvature Relations of Reinforced Concrete Elements. ACI Struct. J. 1990, 87, 597–605. [Google Scholar] [CrossRef]
- Torres, L.; López-Almansa, F.; Bozzo, L.M. Tension-Stiffening Model for Cracked Flexural Concrete Members. J. Struct. Eng. 2004, 130, 1242–1251. [Google Scholar] [CrossRef]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Behavior and Modeling of Bond of FRP Rebars to Concrete. J. Compos. Constr. 1997, 1, 40–51. [Google Scholar] [CrossRef]
- Rossetti, V.A.; Galeota, D.; Giammatteo, M.M. Local bond stress–slip relationships of glass fibre reinforced plastic bars embedded in concrete. Mater. Struct. 1995, 28, 340–344. [Google Scholar] [CrossRef]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Analytical Modelling of Bond between FRP Reinforcing Bars and Concrete. Non-Metallic (FRP) Reinforcement for Concrete Structures. In Proceedings of the Second International RILEM Symposium (FRPRCS-2), Ghent, Belgium, 23–25 August 1995; pp. 164–171. [Google Scholar]
- Eligehausen, R.; Popov, E.P.; Bertero, V.V. Local Bond Stress–Slip Relationships of Deformed Reinforcing Bars Under Generalised Excitations; University of California: Berkeley, CA, USA, 1983. [Google Scholar]
- Hajiloo, H.; Green, M. Bond Strength of GFRP Reinforcing Bars at High Temperatures with Implications for Performance in Fire. J. Compos. Constr. 2018, 22, 04018055. [Google Scholar] [CrossRef]
- Aslani, F. Residual bond between concrete and reinforcing GFRP rebars at elevated temperatures. In Proceedings of the Institution of Civil Engineers—Structures and Buildings; ICE Publishing: London, UK, 2019; Volume 172, pp. 127–140. [Google Scholar] [CrossRef]
- Baena, M.; Torres, L.; Turon, A.; Barris, C. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Compos. Part B Eng. 2009, 40, 784–797. [Google Scholar] [CrossRef]
Specimen a | Geometry b (mm) | GFRP Bar (mm) | Applied Load | Material Property c | Bond Property |
---|---|---|---|---|---|
Slab GA | l = 3900 b = 1200 h = 200 c = 68 ln = 3840 lf = 3500 | Tensile: Φ16@100 (longitudinal) Φ13@200 (transverse) Compressive: Φ13@220 (longitudinal) Φ13@200 (transverse) | 19.1 kN/m | fc,0 = 28.9 MPa ft,0 = 2.8 MPa fp,0 = 1500 MPa Ep,0 = 66 GPa | τmax,0 = 17.33 MPa smax,0 = 0.81 mm |
Slab S1 | l = 3500 b = 1250 h = 180 c = 32 ln = 3200 lf = 3000 | Tensile: Φ12@150 (longitudinal) Φ12@200 (transverse) Compressive: Φ12@200 (longitudinal) Φ12@200 (transverse) | None (Self-weight) | fc,0 = 38.6 MPa ft,0 = 3.2 MPa fp,0 = 1000 MPa Ep,0 = 50 GPa | τmax,0 = 10.63 MPa smax,0 = 0.33 mm |
Slab S2 | Tensile: Φ12@150 (longitudinal) Φ12@200 (transverse) Compressive: Φ12@200 (longitudinal) Φ12@200 (transverse) | 2 × 17.5 kN | |||
Slab S3 | Tensile: Φ12@225 (longitudinal) Φ12@200 (transverse) Compressive: Φ12@200 (longitudinal) Φ12@200 (transverse) | 2 × 17.5 kN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, D.; Ouyang, L.; Gao, W.; Xu, Q.; Liu, W.; Yang, J. Fire Performance of FRP-RC Flexural Members: A Numerical Study. Polymers 2022, 14, 346. https://doi.org/10.3390/polym14020346
Duan D, Ouyang L, Gao W, Xu Q, Liu W, Yang J. Fire Performance of FRP-RC Flexural Members: A Numerical Study. Polymers. 2022; 14(2):346. https://doi.org/10.3390/polym14020346
Chicago/Turabian StyleDuan, Dexin, Lijun Ouyang, Wanyang Gao, Qingfeng Xu, Weidong Liu, and Jian Yang. 2022. "Fire Performance of FRP-RC Flexural Members: A Numerical Study" Polymers 14, no. 2: 346. https://doi.org/10.3390/polym14020346
APA StyleDuan, D., Ouyang, L., Gao, W., Xu, Q., Liu, W., & Yang, J. (2022). Fire Performance of FRP-RC Flexural Members: A Numerical Study. Polymers, 14(2), 346. https://doi.org/10.3390/polym14020346