Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials
Abstract
:1. Introduction
2. Advantages of Plant-Derived Carbon Materials
2.1. Various Chemical Compositions
2.2. Diverse Structures
2.2.1. Zero-Dimensional (0D) Carbon Materials
2.2.2. One-Dimensional (1D) Carbon Materials
2.2.3. Two-Dimensional (2D) Carbon Materials
2.2.4. Three-Dimensional (3D) Carbon Materials
3. Pore Size Regulation Methods
3.1. Micropore Regulation Methods
3.1.1. Alkali Activation
3.1.2. Foam Activation
3.1.3. Physical Activation
3.1.4. Freezing Treatment
3.1.5. Fungal Treatment
3.2. Mesopore Regulation Methods
3.2.1. H3PO4 Activation
3.2.2. Enzymolysis
3.2.3. Molten Salt Activation
3.2.4. Template Method
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, G.X.; Ning, G.Q.; Wei, Q. S-doped carbon materials: Synthesis, properties and applications. Carbon 2022, 195, 328–340. [Google Scholar] [CrossRef]
- Xu, C.M.; Wei, Q.; Li, M.; You, J.; Song, W.M.; Wang, X.J.; Zhang, G.X.; Li, H.F.; He, Y.; Liu, Z.M. Ultrafast and simple integration engineering of graphene-based flexible films with extensive tunability and simple trial in lithium-ion batteries. J. Alloys Compd. 2022, 922, 166282. [Google Scholar] [CrossRef]
- Tian, B.F.; Huang, Z.X.; Xu, X.L.; Cao, X.H.; Wang, H.; Xu, T.T.; Kong, D.Z.; Zhang, Z.F.; Xu, J.; Zang, J.H.; et al. Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes. J. Mater. Sci. Technol. 2023, 132, 50–58. [Google Scholar] [CrossRef]
- Lin, Y.; He, S.; Ouyang, Z.Y.; Li, J.C.; Zhao, J.; Xiao, Y.H.; Lei, S.J.; Cheng, B.C. Synergistic engineering of cobalt selenide and biomass-derived S, N, P co-doped hierarchical porous carbon for modulation of stable Li-S batteries. J. Mater. Sci. Technol. 2023, 134, 11–21. [Google Scholar] [CrossRef]
- Mohanty, R.; Swain, G.; Parida, K.; Parida, K. Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 2022, 919, 165753. [Google Scholar] [CrossRef]
- Dong, X.X.; Wang, J.Y.; Miao, J.F.; Ren, B.; Wang, X.; Zhang, L.H.; Liu, Z.F.; Xu, Y.L. Fe3O4/MnO2 co-doping phenolic resin porous carbon for high performance supercapacitors. J. Taiwan. Inst. Chem. Eng. 2022, 135, 104385. [Google Scholar] [CrossRef]
- Dias, A.P.S.; Rijo, B.; Castilho, S.; Pereira, M.F.; Kiennemann, A. Sintering resistant CO2 sorbents prepared by eggshell derived xerogels. Chem. Eng. J. 2022, 449, 137824. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Ikubanni, P.P.; Orhadahwe, T.A.; Christopher, C.T.; Akano, J.M.; Agboola, O.O.; Adegoke, S.O.; Balogun, A.O.; Ibikunle, R.A. Sustainability of multifaceted usage of biomass: A review. Heliyon 2021, 7, e08025. [Google Scholar] [CrossRef]
- Wu, C.H.; Xu, Q.; Ning, H.; Zhao, Y.; Guo, S.W.; Sun, X.T.; Wang, Y.J.; Hu, H.; Wu, M.B. Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors. Carbon 2022, 196, 727–735. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yang, Z.X.; Zhang, N.; Qiao, K.Y.; Liu, Y.Y.; He, W.X.; Cui, J.L.; Sun, J.C. Boron-doped rice husk-derived C/SiOx composites as high-property anode for Li-ion batteries. Ionics 2022, 28, 4159–4167. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Zhang, J.; Lin, L.; Shi, J.Y. A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers 2022, 14, 4089. [Google Scholar] [CrossRef]
- Mašek, O. 21—Biochar in thermal and thermochemical biorefineries—Production of biochar as a coproduct. In Handbook of Biofuels Production, 2nd ed.; Luque, R., Lin, C.S.K., Wilson, K., Clark, J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 655–671. [Google Scholar]
- Huang, Y.C.; Tang, Z.; Zhou, S.Y.; Wang, H.; Tang, Y.G.; Sun, D.; Wang, H.Y. Renewable waste biomass-derived carbon materials for energy storage. J. Phys. D Appl. Phys. 2022, 55, 313002. [Google Scholar] [CrossRef]
- Lin, L.; Cao, J.M.; Zhang, J.; Cui, Q.L.; Liu, Y. Enhanced Anti-Mold Property and Mechanism Description of Ag/TiO2 Wood-Based Nanocomposites. Nanomaterials 2020, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, A.; Badhulika, S. From onion skin waste to multi-heteroatom self-doped highly wrinkled porous carbon nanosheets for high-performance supercapacitor device. J. Energy Storage 2021, 38, 102533. [Google Scholar] [CrossRef]
- Xue, B.C.; Wang, Z.C.; Zhu, Y.C.; Wang, X.F.; Xiao, R. Sustainable and recyclable synthesis of porous carbon sheets from rice husks for energy storage: A strategy of comprehensive utilization. Ind. Crop. Prod. 2021, 170, 810. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Hu, S.L.; Qian, G.J.; Shi, J.J.; Zhao, S.Y.; Wang, Y.L.; Wang, C.; Lian, J.B. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials 2022, 12, 113724. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Zhang, R.L.; Ren, Y.M. Naturally O-N-S Co-Doped Carbon with Multiscale Pore Architecture Derived from Lotus Leaf Stem for High-Performance Supercapacitors. Bull. Chem. Soc. Jpn. 2021, 94, 1705–1714. [Google Scholar] [CrossRef]
- Pulikkottil, M.; Antony, H.; Muralidharan, M.N.; Gopalan, E.V.; Ansari, S. Cashew Nut Shell Derived Porous Activated Carbon Electrodes for “Water-in-Salt” Electrolyte Based Symmetric Supercapacitor. Chemistryselect 2022, 7, e202200984. [Google Scholar] [CrossRef]
- Subramanian, D.; Raju, G.; Palanivel, B.; Al-Zaqri, N.; Hossain, M.S. Exploration of O-N-S heteroatom self-doped mesoporous activated carbon derived from Datura stramonium seed pods as a potential electrode for supercapacitor application. Ionics 2022, 28, 2363–2375. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Xu, J.; Wang, B.; Xie, J.X.; Ying, G.D.; Li, J.P.; Cheng, Z.; Li, J.; Chen, K.F. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J. Colloid. Interf. Sci. 2022, 625, 158–168. [Google Scholar] [CrossRef]
- Saito-Shida, S.; Kashiwabara, N.; Shiono, K.; Nemoto, S.; Akiyama, H. Development of an analytical method for determination of total ethofumesate residues in foods by gas chromatography-tandem mass spectrometry. Food Chem. 2020, 313, 126132. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.T.; Lu, Y.P.; Qiu, D.P.; Wang, D.K.; Ding, Y.H.; Wang, G.; Liang, Z.Q.; Shen, Z.B.; Li, A.; Chen, X.H.; et al. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. J. Colloid. Interf. Sci. 2022, 620, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.; Muthukutty, B.; Chen, T.W.; Chen, S.M.; Maiyalagan, T.; Pandi, K.; Ali, M.A.; Al-Mohaimeed, A.M. Hydrothermal synthesis of glucose derived carbon surface on cupric oxide (C@CuO) nanocomposite for effective electro-oxidation of catechol. Microchem. J. 2022, 178, 107433. [Google Scholar] [CrossRef]
- Yang, H.P.; Chen, Z.Q.; Chen, W.; Chen, Y.Q.; Wang, X.H.; Chen, H.P. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy 2020, 210, 118646. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Y.X.; Chen, J.; Ge, H.Y.; Sun, J. Biomass derived graphene-like multifold carbon nanosheets with excellent electromagnetic wave absorption performance. Colloid. Surf. Asp. 2022, 644, 128826. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, D.X.; Liang, H.Q.; Yin, J.W.; Xia, Y.F.; Zuo, K.H.; Zeng, Y.P. Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochim. Acta 2020, 352, 136452. [Google Scholar] [CrossRef]
- Singh, A.; Nanda, S.; Guayaquil-Sosa, J.F.; Berruti, F. Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. Can. J. Chem. Eng. 2021, 99, S55–S68. [Google Scholar] [CrossRef]
- Tian, W.J.; Zhang, H.Y.; Duan, X.G.; Sun, H.Q.; Shao, G.S.; Wang, S.B. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909265. [Google Scholar] [CrossRef]
- Liu, T.Y.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 2017, 5, 17705–17733. [Google Scholar] [CrossRef]
- Jerigova, M.; Odziomek, M.; Lopez-Salas, N. “We Are Here!” Oxygen Functional Groups in Carbons for Electrochemical Applications. ACS Omega 2022, 7, 11544–11554. [Google Scholar] [CrossRef]
- Kasera, N.; Kolar, P.; Hall, S.G. Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: A review. Biochar 2022, 4, 17. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Kwon, K. A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications. Chem. Eng. J. 2022, 446, 137116. [Google Scholar] [CrossRef]
- Fan, L.L.; Zhou, W.G.; Su, Z.Y.; Jin, K.L.; Wu, J.B.; Huang, P.; Liu, L.; Xiao, Z.G.; Peng, H.Y. Phosphorus doped biochar as a deoxygenation and denitrogenation catalyst for ex-situ upgrading of vapors from microwave-assisted co-pyrolysis of microalgae and waste cooking oil. J. Anal. Appl. Pyrol. 2022, 164, 105538. [Google Scholar] [CrossRef]
- Xia, C.K.; Surendran, S.; Ji, S.; Kim, D.; Chae, Y.J.; Kim, J.; Je, M.; Han, M.K.; Choe, W.S.; Choi, C.H.; et al. A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon Energy 2022, 4, 491–505. [Google Scholar] [CrossRef]
- Gong, X.B.; Peng, L.; Wang, X.H.; Wu, L.L.; Liu, Y. Duckweed derived nitrogen self-doped porous carbon materials as cost-effective electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 15336–15345. [Google Scholar] [CrossRef]
- Chen, H.; Yu, F.; Wang, G.; Chen, L.; Dai, B.; Peng, S.L. Nitrogen and Sulfur Self-Doped Activated Carbon Directly Derived from Elm Flower for High-Performance Supercapacitors. ACS Omega 2018, 3, 4724–4732. [Google Scholar] [CrossRef]
- Abbas, S.C.; Lin, C.M.; Hua, Z.F.; Deng, Q.D.; Huang, H.; Ni, Y.H.; Cao, S.L.; Ma, X.J. Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors. Chem. Eng. J. 2022, 433, 133738. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, Y.C.; Chen, J.L.; Guo, X.M.; Yang, D.D.; Wang, J.C.; Zhang, J.H.; Zhang, F.; Yuan, A.H. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances. J. Nanosci. Nanotechnol. 2020, 20, 2728–2735. [Google Scholar] [CrossRef]
- Zhou, N.; Zu, J.N.; Xu, F.J.; Wang, Y.F.; Luo, Y.H.; Li, S.K.; Tang, J.J.; Zhou, Z.; Zhong, M.E. The preparation of N, S, P self-doped and oxygen functionalized porous carbon via aerophilic interface reaction for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 2020, 31, 12961–12972. [Google Scholar] [CrossRef]
- Wang, F.L.; Li, Q.; Xiao, Z.X.; Jiang, B.H.; Ren, J.W.; Jin, Z.C.; Tang, X.J.; Chen, Y.L.; Li, X.Y. Conversion of rice husk biomass into electrocatalyst for oxygen reduction reaction in Zn-air battery: Effect of self-doped Si on performance. J. Colloid Interf. Sci. 2022, 606, 1014–1023. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Li, Y.J.; Zhu, G.; Shi, J.Y.; Lu, T.; Pan, L.K. Biomass-Based N, P, and S Self-Doped Porous Carbon for High Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12052–12060. [Google Scholar] [CrossRef]
- Yu, T.T.; Wang, F.M.; Zhang, X.B.; Lv, G.J.; Lv, H.H.; Wang, J.W.; Zhai, Y.; Li, M.Z. Typha orientalis leaves derived P-doped hierarchical porous carbon electrode and carbon/MnO2 composite electrode for high-performance asymmetric supercapacitor. Diam. Relat. Mater. 2021, 116, 108450. [Google Scholar] [CrossRef]
- Liu, J.W.; Min, S.X.; Wang, F.; Zhang, Z.G. High-Performance Aqueous Supercapacitors Based on Biomass-Derived Multiheteroatom Self-Doped Porous Carbon Membranes. Energy Technol. 2020, 8, 2000391. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Z.; Dai, J.D.; Yan, Y.S. Waste Biomass Based-Activated Carbons Derived from Soybean Pods as Electrode Materials for High-Performance Supercapacitors. Chemistryselect 2018, 3, 5726–5732. [Google Scholar] [CrossRef]
- Yang, B.B.; Zhang, D.Y.; He, J.J.; Wang, Y.L.; Wang, K.J.; Li, H.X.; Wang, Y.; Miao, L.; Ren, R.Y.; Xie, M. Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application. Carbon Lett. 2020, 30, 709–719. [Google Scholar] [CrossRef]
- Jia, B.; Mian, Q.H.; Wu, D.L.; Wang, T. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density. Mater. Today Chem. 2022, 24, 100828. [Google Scholar] [CrossRef]
- Li, J.; Luo, F.L.; Lin, T.; Yang, J.J.; Yang, S.; He, D.J.; Xiao, D.; Liu, W.L. Pomelo peel -based N, O-codoped hierarchical porous carbon material for supercapacitor application. Chem. Phys. Lett. 2020, 753, 137597. [Google Scholar] [CrossRef]
- Bhattarai, R.M.; Chhetri, K.; Natarajan, S.; Saud, S.; Kim, S.J.; Mok, Y.S. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. Chemosphere 2022, 303, 135290. [Google Scholar] [CrossRef]
- Jiang, L.L.; Sheng, L.Z.; Fan, Z.J. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.Y.; Li, G.; Wang, M.H.; Li, G.F.; Li, Y.W.; Jia, L.S. Biomass-Derived Carbon Quantum Dots-Induced Self-Assembly of 3D Networks of Nickel-Cobalt Double Hydroxide Nanorods as High-Performance Electrode Materials for Supercapacitors. Chemelectrochem 2022, 9, e202200296. [Google Scholar] [CrossRef]
- Jagannathan, M.; Dhinasekaran, D.; Soundharraj, P.; Rajendran, S.; Vo, D.V.N.; Prakasarao, A.; Ganesan, S. Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. J. Hazard. Mater. 2021, 416, 125091. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Yu, C.Y.; Zhang, X.J.; Qin, W.; Lu, T.; Hu, B.W.; Li, H.L.; Pan, L.K. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim Acta. 2016, 191, 385–391. [Google Scholar] [CrossRef]
- Wang, S.; Shi, H.T.; Xia, Y.H.; Liang, S.T.; Pei, M.F.; Xu, Z.W.; Pei, X.Y.; Hu, Y.L.; Wu, X.Q. Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius. J. Alloys Compd. 2022, 918, 165680. [Google Scholar] [CrossRef]
- Wu, S.S.; Fu, H.; Hu, X.S.; Ding, C.Y.; Yan, X.; Gu, H.; Ren, X.Z.; Zhang, H.; Wen, G.W.; Huang, X.X. High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent. J. Colloid. Interf. Sci. 2022, 622, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Long, A.C.; Zhao, P.F.; Liao, L.S.; Wang, R.; Tao, J.L.; Liao, J.H.; Liao, X.X.; Zhao, Y.F. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. Materials 2022, 15, 4845. [Google Scholar] [CrossRef]
- Guo, S.S.; Liu, Y.B.; Zhang, W.G.; Wang, Y.C.; Xiao, B.; Gao, Y.F. N-doped carbon fibers in situ prepared by hydrothermal carbonization of Camellia sinensis branches waste for efficient removal of heavy metal ions. Environ. Sci. Pollut. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, J.H.; Ai, W.; Fan, Z.X.; Shen, X.N.; Zou, C.J.; Liu, J.P.; Zhang, H.; Yu, T. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 2014, 7, 2670–2679. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, H.Y.; Wu, X.X.; Cui, H.; Li, D.M.; Jiang, J.R.; Gao, C.X.; Wang, Q.S.; Cui, Q.L. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets. Nanoscale 2015, 7, 10807. [Google Scholar] [CrossRef]
- Zhou, Y.C.; He, J.J.; Chen, R.X.; Li, X.D. Recent advances in biomass-derived graphene and carbon nanotubes. Mater. Today Sustain. 2022, 18, 100138. [Google Scholar] [CrossRef]
- Ye, R.Q.; Chyan, Y.; Zhang, J.B.; Li, Y.L.; Han, X.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene Formation on Wood. Adv. Mater. 2017, 29, 129268. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Zhang, H.W.; Lin, J.; Wan, C.X. Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS Omega 2020, 5, 14611–14618. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Fang, W.; Li, W.X.; He, X.A.; Zhang, F.Q. Construction of hierarchical NiCo2S4 nanowires on 3D biomass carbon for high-performance supercapacitors. J. Mater. Sci.-Mater. Electron. 2018, 29, 9573–9581. [Google Scholar] [CrossRef]
- Wei, W.F.; Gu, X.S.; Wang, R.H.; Feng, X.N.; Chen, H. Wood-Based Self-Supporting Nanoporous Three-Dimensional Electrode for High-Efficiency Battery Deionization. Nano Lett. 2022, 22, 7572–7578. [Google Scholar] [CrossRef]
- Liu, Y.J.; Huo, Z.B.; Song, Z.Y.; Zhang, C.T.; Ren, D.Z.; Zhong, H.; Jin, F.M. Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. J. Taiwan Inst. Chem. Eng. 2019, 96, 575–587. [Google Scholar] [CrossRef]
- Mu, Y.K.; He, W.Y.; Ma, H.Z. Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity. Bioresour. Technol. 2021, 342, 126001. [Google Scholar] [CrossRef]
- Wang, J.C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Ma, Z.W.; Liu, H.Q.; Lu, Q.F. Porous biochar derived from tea saponin for supercapacitor electrode: Effect of preparation technique. J. Energy Storage 2021, 40, 102773. [Google Scholar] [CrossRef]
- Shen, H.L.; Xia, X.F.; Ouyang, Y.; Jiao, X.Y.; Mutahir, S.; Mandler, D.N.; Hao, Q.L. Preparation of Biomass-Based Porous Carbons with High Specific Capacitance for Applications in Supercapacitors. Chemelectrochem 2019, 6, 3599–3605. [Google Scholar] [CrossRef]
- Fu, Y.H.; Shen, Y.F.; Zhang, Z.D.; Ge, X.L.; Chen, M.D. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Yang, F.; Li, W.H.; Zhong, X.; Tu, W.L.; Cheng, J.; Chen, L.; Lu, J.; Yuan, A.H.; Pan, J.M. The alkaline sites integrated into biomass-carbon reinforce selective adsorption of acetic acid: In situ implanting MgO during activation operation. Sep. Purif. Technol. 2022, 297, 121415. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Li, B.; Xie, Z.X.; Li, X.D.; Tang, J.; Fan, S.S. Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Okonkwo, C.A.; Lv, T.; Hong, W.; Li, G.F.; Huang, J.J.; Deng, J.X.; Jia, L.S.; Wu, M.H.; Liu, H.; Guo, M.X. The synthesis of micromesoporous carbon derived from nitrogen-rich spirulina extract impregnated castor shell based on biomass self-doping for highly efficient supercapacitor electrodes. J. Alloys Compd. 2020, 825, 154009. [Google Scholar] [CrossRef]
- Han, J.; Zhang, L.; Zhao, B.; Qin, L.B.; Wang, Y.; Xing, F.T. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. Ind. Crop. Prod. 2019, 128, 290–297. [Google Scholar] [CrossRef]
- Li, K.; Niu, X.; Zhang, D.; Guo, H.; Zhu, X.; Yin, H.; Lin, Z.; Fu, M. Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture. Environ. Pollut. 2022, 306, 119399. [Google Scholar] [CrossRef] [PubMed]
- Anthonysamy, S.I.; Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide. Int. J. Environ. Sci. Technol. 2022, 19, 7127–7140. [Google Scholar] [CrossRef]
- De Souza, L.K.C.; Goncalves, A.A.S.; Queiroz, L.S.; Chaar, J.S.; da Rocha, G.N.; da Costa, C.E.F. Utilization of acai stone biomass for the sustainable production of nanoporous carbon for CO2 capture. Sustain. Mater. Technol. 2020, 25, e00168. [Google Scholar] [CrossRef]
- Gao, Q.; Xiang, H.Z.; Ni, L.M.; Hou, Y.M.; He, Y.Y.; Feng, Z.X.; Yang, J.F.; Hu, W.H.; Liu, Z.J. Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells. Colloid Surf. A 2021, 629, 127408. [Google Scholar] [CrossRef]
- Chen, W.H.; Du, J.T.; Lee, K.T.; Ong, H.C.; Park, Y.K.; Huang, C.C. Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction. Chemosphere 2021, 275, 129999. [Google Scholar] [CrossRef] [PubMed]
- Mangisetti, S.R.; Kamaraj, M.; Sundara, R. Large-scale single-step synthesis of wrinkled N-S doped 3D graphene like nanosheets from Tender palm shoots for high energy density supercapacitors. Int. J. Hydrogen Energy 2021, 46, 403–415. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dai, G.X.; Zhu, L.J.; Wang, S.R. Green Conversion of Microalgae into High-Performance Sponge-Like Nitrogen-Enriched Carbon. Chemelectrochem 2019, 6, 646–652. [Google Scholar] [CrossRef]
- Liang, X.D.; Liu, R.N.; Wu, X.L. Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Micropor. Mesopor. Mater. 2021, 310, 110659. [Google Scholar] [CrossRef]
- Yang, F.; Sun, L.; Zhang, W.; Zhang, Y. One-pot synthesis of porous carbon foam derived from corn straw: Atrazine adsorption equilibrium and kinetics. Environ. Sci.-Nano 2017, 4, 625–635. [Google Scholar] [CrossRef]
- Xiao, X.; Song, L.; Wang, Q.L.; Wang, Z.C.; Wang, H.Y.; Chu, J.C.; Liu, J.M.; Liu, X.R.; Bian, Z.T.; Zhao, X.X. Hierarchical hollow-tubular porous carbon microtubes prepared via a mild method for supercapacitor electrode materials with high volumetric capacitance. RSC Adv. 2022, 12, 16257–16266. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Taslim, R.; Malik, U.; Usman, Z. Single Step Carbonization-Activation of Durian Shells for Producing Activated Carbon Monolith Electrodes. Int. J. Electrochem. Sci. 2019, 14, 1318–1330. [Google Scholar] [CrossRef]
- Ding, Y.X.; Qi, J.; Hou, R.L.; Liu, B.; Yao, S.Y.; Lang, J.W.; Chen, J.T.; Yang, B.J. Preparation of High-Performance Hierarchical Porous Activated Carbon via a Multistep Physical Activation Method for Supercapacitors. Energy Fuel 2022, 36, 5456–5464. [Google Scholar] [CrossRef]
- Puig-Gamero, M.; Esteban-Arranz, A.; Sanchez-Silva, L.; Sanchez, P. Obtaining activated biochar from olive stone using a bench scale high-pressure thermobalance. J. Environ. Chem. Eng. 2021, 9, 105374. [Google Scholar] [CrossRef]
- Phothong, K.; Tangsathitkulchai, C.; Lawtae, P. The Analysis of Pore Development and Formation of Surface Functional Groups in Bamboo-Based Activated Carbon during CO2 Activation. Molecules 2021, 26, 5641. [Google Scholar] [CrossRef]
- Khuong, D.A.; Nguyen, H.N.; Tsubota, T. Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenergy 2021, 148, 106039. [Google Scholar] [CrossRef]
- Qin, L.Y.; Hou, Z.W.; Lu, S.; Liu, S.; Liu, Z.Y.; Jiang, E.C. Porous Carbon derived from Pine Nut Shell prepared by Steam Activation for Supercapacitor Electrode Material. Int. J. Electrochem. Sci. 2019, 14, 8907–8918. [Google Scholar] [CrossRef]
- Sun, K.; Leng, C.Y.; Jian-Chun, J.; Bu, Q.; Lin, G.F.; Lu, X.C.; Zhu, G.Z. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater. 2017, 32, 451–459. [Google Scholar] [CrossRef]
- Pallares, J.; Gonzalez-Cencerrado, A.; Arauzo, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Kishibayev, K.K.; Serafin, J.; Tokpayev, R.R.; Khavaza, T.N.; Atchabarova, A.A.; Abduakhytova, D.A.; Ibraimov, Z.T.; Srenscek-Nazzal, J. Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture. J. Environ. Chem. Eng. 2021, 9, 106798. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yu, Y.Y.; Zhang, X.X.; Guo, C.Y.; Chen, C.Z.; Wang, S.F.; Min, D.Y. High performance supercapacitors assembled with hierarchical porous carbonized wood electrode prepared through self-activation. Ind. Crop. Prod. 2022, 181, 114802. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Tian, J.Y.; Li, L.; Kong, L.T.; Liu, S.; Guo, K.K.; Chen, X.L. Interconnected hierarchical porous carbon synthesized from freeze-dried celery for supercapacitor with high performance. Int. J. Energy Res. 2021, 45, 9058–9068. [Google Scholar] [CrossRef]
- Hou, Y.R.; Liang, Y.; Hu, H.B.; Tao, Y.P.; Zhou, J.C.; Cai, J.J. Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies. Bioresour. Technol. 2021, 329, 124877. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Q.; Deng, M.G. Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties. ACS Omega 2021, 45, 17440–17449. [Google Scholar] [CrossRef]
- Wang, P.; Ye, H.; Yin, Y.X.; Chen, H.; Bian, Y.B.; Wang, Z.R.; Cao, F.F.; Guo, Y.G. Fungi-Enabled Synthesis of Ultrahigh-Surface-Area Porous Carbon. Adv. Mater. 2019, 31, e1805134. [Google Scholar] [CrossRef]
- Zhang, W.X.; Cheng, H.R.; Niu, Q.; Fu, M.L.; Huang, H.M.; Ye, D.Q. Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance. Environ. Sci. Technol. 2019, 53, 7632–7640. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.J.; Chen, W.P.; Duan, H.; Ye, H.; Yao, H.R.; Yin, Y.X.; Cao, F.F. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Cheng, H.R.; Sun, Y.H.; Wang, X.H.; Zou, S.B.; Ye, G.Z.; Huang, H.M.; Ye, D.Q. Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks: Ultrahigh surface area and impressive improvement in toluene adsorption. J. Hazard. Mater. 2020, 392, 122298. [Google Scholar] [CrossRef]
- Ramos, M.O.; Meraz, E.D.; Rojo, J.M.; Pacheco-Catalan, D.E.; Castro, M.A.P.; Ortiz, R.S.M. Activated carbons from coconut shell and NiO-based composites for energy storage systems. J. Mater. Sci. Mater. Electron. 2021, 32, 4872–4884. [Google Scholar] [CrossRef]
- Yu, H.W.; Yu, Z.Y.; Shao, Q.; Cheng, S.; Ren, C.Z.; Liu, G.F.; Wei, W. Preparation of a garlic peel waste-derived carbon solid acid catalyst with the porous structure for biodiesel production. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.X.; Liu, Q.Y.; Zheng, X.C. Biomass waste-derived mesopore-dominant porous carbon for high-efficiency capacitive energy storage. J. Alloys Compd. 2021, 885, 161218. [Google Scholar] [CrossRef]
- Si, H.Y.; Wang, B.; Chen, H.Y.; Li, Y.G.; Zhang, X.D.; Liang, X.H.; Sun, L.Z.; Yang, S.X.; Hou, D. Activated Carbon Prepared from Rose Branch using H3PO4-hydrothermal Carbonization and Activation and its Apllication for Supercapacitors. Int. J. Electrochem. Sci. 2019, 14, 7899–7910. [Google Scholar] [CrossRef]
- Gurer, A.G.; Aktas, K.; Akcetin, M.O.; Unsar, A.E.; Asilturk, M. Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water Air Soil Poll. 2021, 232, 138. [Google Scholar] [CrossRef]
- Grimm, A.; dos Reis, G.S.; Dinh, V.M.; Larsson, S.H.; Mikkola, J.P.; Lima, E.C.; Xiong, S.J. Hardwood spent mushroom substrate-based activated biochar as a sustainable bioresource for removal of emerging pollutants from wastewater. Biomass. Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Chatir, E.; El Hadrami, A.; Ojala, S.; Brahmi, R. Production of activated carbon with tunable porosity and surface chemistry via chemical activation of hydrochar with phosphoric acid under oxidizing atmosphere. Surf. Interfaces 2022, 30, 101849. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Wang, X.Y.; Zheng, X.C. Chinar fruit fluff-derived mesopore-dominant hierarchical porous carbon for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 3498–3511. [Google Scholar] [CrossRef]
- Hu, S.C.; Cheng, J.; Wang, W.P.; Sun, G.T.; Hu, L.L.; Zhu, M.Q.; Huang, X.H. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications. Renew Energy 2021, 177, 82–94. [Google Scholar] [CrossRef]
- Daoud, M.; Benturki, O.; Girods, P.; Donnot, A.; Fontana, S. Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchem. J. 2019, 148, 493–502. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, H.M.; Chung, D.C.; Kim, B.J. Effect of Mesopore Development on Butane Working Capacity of Biomass-Derived Activated Carbon for Automobile Canister. Nanomaterials 2021, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cheong, J.Y.; Lee, J.; Ahn, J.; Duan, G.G.; Chen, H.L.; Zhang, Q.; Kim, I.D.; Jiang, S.H. Pyrolysis of Enzymolysis-Treated Wood: Hierarchically Assembled Porous Carbon Electrode for Advanced Energy Storage Devices. Adv. Funct. Mater. 2021, 31, 202101077. [Google Scholar] [CrossRef]
- Li, Y.Q.; Huang, X.B.; Lv, J.J.; Wang, F.; Jiang, S.H.; Wang, G. Enzymolysis-treated wood-derived hierarchical porous carbon for fluorescence-functionalized phase change materials. Compos. Part. B Eng. 2022, 234, 109735. [Google Scholar] [CrossRef]
- Pang, Z.Y.; Li, G.S.; Xiong, X.L.; Ji, L.; Xu, Q.; Zou, X.L.; Lu, X.G. Molten salt synthesis of porous carbon and its application in supercapacitors: A review. J. Energy. Chem. 2021, 61, 622–640. [Google Scholar] [CrossRef]
- Rezaei, A.; Kamali, A.R. Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 2018, 83, 146–161. [Google Scholar] [CrossRef]
- Liu, X.F.; Antonietti, M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 2014, 69, 460–466. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.Z.; Zhang, G.X.; Liu, W.; Wang, D.H.; Dong, Y.G. Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater. Lett. 2016, 176, 60–63. [Google Scholar] [CrossRef]
- Lu, J.F.; Kuai, H.X.; Li, S.S.; Lv, X.Y.; Wen, Y.X.; Lei, F.H. Tuning the structure and electrochemical performance of pinecone-derived porous carbon for potassium-ion battery anodes using molten ZnCl2. Ionics 2022, 28, 3799–3816. [Google Scholar] [CrossRef]
- Taer, E.; Taslim, R.; Apriwandi, A. Ultrahigh Capacitive Supercapacitor Derived from Self-Oxygen Doped Biomass-Based 3D Porous Carbon Sources. Chemnanomaterials 2022, 8, e202100388. [Google Scholar] [CrossRef]
- Lima, R.; dos Reis, G.S.; Thyrel, M.; Alcaraz-Espinoza, J.J.; Larsson, S.H.; de Oliveira, H.P. Facile Synthesis of Sustainable Biomass-Derived Porous Biochars as Promising Electrode Materials for High-Performance Supercapacitor Applications. Nanomaterials 2022, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Wu, D.P.; Wang, H.J.; Gao, Z.Y.; Xu, F.; Jiang, K. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A 2018, 6, 1244–1254. [Google Scholar] [CrossRef]
- Li, J.M.; Wei, L.S.; Jiang, Q.M.; Liu, C.F.; Zhong, L.X.; Wang, X.Y. Salt-template assisted synthesis of cornstalk derived hierarchical porous carbon with excellent supercapacitance. Ind. Crop. Prod. 2020, 154, 112666. [Google Scholar] [CrossRef]
- Zuo, H.F.; Qin, X.X.; Liu, Z.G.; Fu, Y.L. Preparation and Characterization of Modified Corn Stalk Biochar. Biosources 2021, 16, 7427–7442. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, R.R.; Bi, H.H.; Lu, Y.H.; Ma, L.B.; He, X.J. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Mater. 2021, 36, 69–78. [Google Scholar] [CrossRef]
- Yu, F.; Ye, Z.H.; Chen, W.R.; Wang, Q.Y.; Wang, H.; Zhang, H.L.; Peng, C. Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Appl. Surf. Sci. 2020, 507, 145190. [Google Scholar] [CrossRef]
- Wang, L.C.; Xie, L.N.; Wang, H.L.; Ma, H.H.; Zhou, J.B. Sustainable synthesis of apricot shell-derived hierarchical porous carbon for supercapacitors: A novel mild one-step synthesis process. Colloid Surf. A 2022, 637, 128257. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Wang, Y.T.; Zhang, X.; Shen, B.X.; Wang, F.M.; Zhang, Y.F. Hierarchically porous biochar synthesized with CaCO3 template for efficient Hg-0 adsorption from flue gas. Fuel. Process. Technol. 2020, 199, 106247. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Lv, H.J.; Chen, A.B. Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors. J. Alloys Compd. 2021, 853, 157091. [Google Scholar] [CrossRef]
- Qiu, D.P.; Guo, N.N.; Gao, A.; Zheng, L.; Xu, W.J.; Li, M.; Wang, F.; Yang, R. Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: Mechanism and capacitive energy storage. Electrochim. Acta 2019, 294, 398–405. [Google Scholar] [CrossRef]
- Qin, X.X.; Luo, J.X.; Liu, Z.G.; Fu, Y.L. Preparation and Characterization of MgO-Modified Rice Straw Biochars. Molecules 2020, 25, 5730. [Google Scholar] [CrossRef] [PubMed]
Material | Method | Temperature (°C) | Ratio | SBET (m2/g) | Vtotal (cm3/g) | Vmic/Vtotal (%) | Reference |
---|---|---|---|---|---|---|---|
Tea saponin | KOH activation | 750 | 1:1 | 1550 | 0.91 | 62 | [69] |
Orange peel | KOH activation | 800 | 1:1 | 2004 | 1.24 | 70 | [70] |
Rice husks | KOH activation | 750 | 1:2 | 741 | 0.45 | 67 | [71] |
Grapefruit peel | KOH activation | 800 | 1:4.5 | 3497 | 1.59 | 99 | [72] |
Peanut shells | KOH activation | 800 | 1:4 | 1272 | 0.65 | 52 | [73] |
Castor shells | KOH activation | 800 | 1:1 | 891 | 0.43 | 85 | [74] |
Bagasse | KOH activation | 800 | 1:2 | 1381 | 0.58 | 81 | [75] |
Pine sawdust + sludge | KOH activation | 800 | 1:2 | 2482 | 0.89 | 71 | [76] |
Rubber seed shells | KOH activation | 700 | 1:3 | 712 | 0.36 | 28 | [77] |
Biomass waste | KOH activation | 850 | 1:3 | 2612 | 1.20 | 70 | [78] |
Material | Method | Temperature (°C) | Time (h) | Gas Flow Rate (mL/min) | SBET (m2/g) | Vtotal (cm3/g) | Vmic/Vtotal (%) | Reference |
---|---|---|---|---|---|---|---|---|
Olive stone | H2O(g) activation | 900 | 0.5 | 0.15 | 1191 | 0.69 | 75.3 | [88] |
Bamboo | CO2 activation | 900 | 2 | - | 907 | 0.44 | 88.4 | [89] |
Bamboo | CO2 activation | 800 | 4 | - | 1496 | 0.64 | 95.3 | [90] |
Pine nut shell | H2O(g) activation | 850 | 1 | 18 | 956 | 0.62 | 62.9 | [91] |
Coconut shell | H2O(g) + CO2 activation | 900 | 6 | - | 1194 | 0.53 | 87.8 | [92] |
Barley straw | CO2 activation | 800 | 1 | 2500 | 789 | 0.35 | 93.5 | [93] |
Corn cob | H2O(g) activation | 800 | 1 | - | 566 | 0.32 | 89.0 | [94] |
Apricot shell | CO2 activation | 500 | 5 | 10 | 1690 | 0.93 | 52.6 | [87] |
Wood | CO2 activation | 1000 | 10 | 10 | 1145 | 0.47 | 50.3 | [95] |
Material | Method | Temperature (°C) | Ratio | SBET (m2/g) | Vtotal (cm3/g) | Vmes/Vtotal (%) | Reference |
---|---|---|---|---|---|---|---|
Bitter orange peel | H3PO4 activation | 550 | 1:1 | 611 | 0.57 | 92.4 | [107] |
Poplar catkins | H3PO4 activation | 600 | 1:3 | 2001 | 1.22 | 91.7 | [105] |
Spent mushroom substrate | H3PO4 activation | 900 | 1:2 | 1215 | 0.83 | 87.4 | [108] |
Argan nut shell | H3PO4 activation | 500 | 1:3 | 1880 | 1.36 | 50.7 | [109] |
Chinar fruit fluff | H3PO4 activation | 600 | - | 1759 | 1.68 | 97.4 | [110] |
Lacquer wood | H3PO4 activation | 400 | - | 1609 | 1.46 | 97.6 | [111] |
Phoenix dactylifera rachis | H3PO4 activation | 500 | 1:3 | 1283 | 1.72 | 83.5 | [112] |
Ziziphus jujuba stones | H3PO4 activation | 500 | 1:3 | 1896 | 1.26 | 95.2 | [112] |
Kenaf | H3PO4 activation | 500 | 1:1 | 1510 | 1.26 | 57.0 | [113] |
Material | Method | Temperature (°C) | Ratio | SBET (m2/g) | Vtotal (cm3/g) | Vmes/Vtotal (%) | Reference |
---|---|---|---|---|---|---|---|
Willow leaves | ZnCl2 | 800 | 1:3 | 809 | 0.98 | 95.5 | [119] |
Pinecone | ZnCl2 | 600 | 1:4 | 1703 | 1.86 | 90.1 | [120] |
Banana leaves | ZnCl2 | 800 | - | 860 | 0.89 | 66.6 | [121] |
Rice husks | NaCl/KCl | 800 | - | 977 | 0.45 | 65.2 | [16] |
Tree bark | ZnCl2 | 900 | 1:1 | 1114 | 0.78 | 47.4 | [122] |
Cornstalk | NaCl/KCl | 800 | 1:1 | 864 | 1.01 | 72.8 | [123] |
Cornstalk | LiCl/ZnCl2 | 800 | 1:1 | 1276 | 0.80 | 78.9 | [124] |
Bitter orange peel | ZnCl2 | 450 | 1:1 | 1450 | 0.78 | 87.3 | [107] |
Butnea monosperma pollens | ZnCl2 | 800 | 1:2 | 1422 | 0.76 | 57.3 | [125] |
Material | Method | Temperature (°C) | SBET (m2/g) | Vtotal (cm3/g) | Vmes/Vtotal (%) | Reference |
---|---|---|---|---|---|---|
Plane tree bark | ZnO | 900 | 1587 | 2.33 | 82.8 | [127] |
Apricot shells | CaO | 700 | 931 | 1.48 | 73.6 | [128] |
Rice straw | CaO | 800 | 742 | 0.70 | 77.1 | [129] |
Corn stalk | MgO | 600 | 218 | 146.00 | 34.0 | [125] |
Carrot | SiO2 | 700 | 1265 | 2.10 | 90.4 | [130] |
Cork | MnO | 800 | 1199 | 0.98 | 60.0 | [131] |
Rice straw | MgO | 500 | 158 | 0.16 | 42.0 | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, K.; Wang, H.; Lin, L.; Zhang, J.; Li, P.; Zhang, Q.; Shi, J.; Cui, H. Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials. Polymers 2022, 14, 4261. https://doi.org/10.3390/polym14204261
Liu J, Zhang K, Wang H, Lin L, Zhang J, Li P, Zhang Q, Shi J, Cui H. Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials. Polymers. 2022; 14(20):4261. https://doi.org/10.3390/polym14204261
Chicago/Turabian StyleLiu, Jing, Ke Zhang, Huiyan Wang, Lin Lin, Jian Zhang, Peng Li, Qiang Zhang, Junyou Shi, and Hang Cui. 2022. "Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials" Polymers 14, no. 20: 4261. https://doi.org/10.3390/polym14204261
APA StyleLiu, J., Zhang, K., Wang, H., Lin, L., Zhang, J., Li, P., Zhang, Q., Shi, J., & Cui, H. (2022). Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials. Polymers, 14(20), 4261. https://doi.org/10.3390/polym14204261