Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview
Abstract
:1. Introduction
2. Plastics
2.1. Plastics and Their Properties
2.2. Types of Plastics and Their Uses
2.3. Production and Disposal of Plastics
2.4. Uses and Hazards of Plastics
3. Biodegradation
3.1. Biodegradation of Plastic by Microbes
3.2. Mechanism of Biodegradation
3.3. Enzymatic Degradation of Plastic
4. Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joel, F.R. Polymer Science and Technology. Introduction to Polymer Science; 3rd, Ed.; Prentice Hall PTR, Inc.: Upper Saddle River, NJ, USA, 1995; pp. 4–9. [Google Scholar]
- King, S.; Locock, K.E.S. A circular economy framework for plastics: A semi-systematic review. J. Clean. Prod. 2022, 364, 132503. [Google Scholar] [CrossRef]
- Shanker, R.; Khan, D.; Hossain, R.; Islam, M.T.; Locock, K.; Ghose, A.; Sahajwalla, V.; Schandl, H.; Dhodapkar, R. Plastic waste recycling: Existing Indian scenario and future opportunities. Int. J. Environ. Sci. Technol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Mendes, G.A.; de Oliveira, A.M.; Dias, C.G.B.T. Manufacture and characterization of polypropylene (PP) and high-density polyethylene (HDPE) blocks for potential use as masonry component in civil construction. Polymers 2022, 14, 2463. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham, D.S.; Sharma, P.; et al. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Bahl, S.; Dolma, J.; Singh, J.J.; Sehgal, S. Biodegradation of plastics: A state of the art review. Mater. Today Proc. 2021, 39, 31–34. [Google Scholar] [CrossRef]
- Huang, J.-C.; Shetty, A.S.; Wang, M.-S. Biodegradable plastics: A review. Adv. Polym. Technol. 1990, 10, 23–30. [Google Scholar] [CrossRef]
- Yutaka, T.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2004, 10, 3722–3724. [Google Scholar]
- Teleky, B.-E.; Vodnar, D.C. Recent advances in biotechnological itaconic acid production, and application for a sustainable approach. Polymers 2021, 13, 3574. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.-P. Managing plastic waste-sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Thakali, A.; MacRae, J.D. A review of chemical and microbial contamination in food: What are the threats to a circular food system? Environ. Res. 2021, 194, 110635. [Google Scholar] [CrossRef]
- Iravanian, A.; Ravari, S.O. Types of contamination in landfills and effects on the environment: A review study. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012083. [Google Scholar] [CrossRef]
- Bollag, W.B.; Jerzy, D.; Bollag, J.M. Biodegradation & Encyclopaedia of Microbiology; Lederberg, J., Ed.; Academic: Elsevier: New York, NY, USA, 2000; Volume 65, pp. 461–471. [Google Scholar]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Adamcová, D.; Zloch, J.; Brtnický, M.; Vaverková, M.D. Biodegradation/disintegration of selected range of polymers: Impact on the compost quality. J. Polym. Environ. 2019, 27, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Poznyak, T.I.; Oria, I.C.; Poznyak, A.S. Biodegradation. In Ozonation and Biodegradation in Environmental Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 353–388. [Google Scholar]
- Hatti-Kaul, R.; Nilsson, L.J.; Zhang, B.; Rehnberg, N.; Lundmark, S. Designing biobased recyclable polymers for plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef]
- Raaman, N.; Rajitha, N.; Jayshree, A.; Jegadeesh, R. Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J. Acad. Indus. Res. 2012, 6, 313–316. [Google Scholar]
- Dalton, B.; Bhagabati, P.; DeMicco, J.; Padamati, R.B.; O’Connor, K. A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Lear, G.; Kingsbury, J.M.; Franchini, S.; Gambarini, V.; Maday, S.D.M.; Wallbank, J.A.; Weaver, L.; Pantos, O. Plastics and the microbiome: Impacts and solutions. Environ. Microbiome 2021, 16, 2. [Google Scholar] [CrossRef]
- ASTM D6098–16; Standard Classification System and Basis for Specification for Extruded and Compression Molded Shapes from Thermoplastic Polymers. ASTM International: West Conshohocken, PA, USA, 2016.
- Alexander, M. Biodegradation of chemicals of environmental concern. Science 1981, 21, 132–138. [Google Scholar] [CrossRef]
- Pires, J.R.A.; Souza, V.G.L.; Fuciños, P.; Pastrana, L.; Fernando, A.L. Methodologies to assess the biodegradability of bio-based polymers-current knowledge and existing gaps. Polymers 2022, 14, 1359. [Google Scholar] [CrossRef] [PubMed]
- Chielinli, E.; Corti, A.; Antone, S.D. Oxo-biodegradable full carbon backbone polymers biodegradation behavior of thermally oxidized polyethylene in an aqueous m condition. Polym. Degrad. Stab. 2006, 91, 2739–2747. [Google Scholar] [CrossRef]
- Gu, J.D. Biodegradability of plastics: The issues, recent advances, and future perspectives. Environ. Sci. Pollut. Res. 2021, 28, 1278–1282. [Google Scholar] [CrossRef]
- Filiciotto, L.; Rothenberg, G. Biodegradable plastics: Standards, policies, and impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef]
- Hadad, D.; Geresh, S.; Sivan, A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 2005, 98, 1093–1100. [Google Scholar] [CrossRef]
- Kim, D.Y.; Rhee, H.Y. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 2003, 61, 300–308. [Google Scholar] [CrossRef]
- Alauddin, M.; Choudkury, I.A.; Baradieand, M.A.; Hashmi, M.S.J. Plastics and their machining: A review. J. Mater. Process. Technol. 1995, 54, 40–46. [Google Scholar] [CrossRef]
- Avella, M.; Bonadies, E.; Martuscelli, E.; Rimedio, R. European current standardization for plastic packaging recoverable through composting and biodegradation. Polym. Test. 2001, 20, 517–521. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Degradation of microbial polyesters. Biotechnol. Lett. 2009, 26, 1181–1189. [Google Scholar] [CrossRef]
- Vijaya, C.H.; Reddy, R.M. Impact of soil composting using municipal solid waste on biodegradation of plastics. Int. J. Biotec. 2008, 7, 235–239. [Google Scholar]
- Varyan, I.; Tyubaeva, P.; Kolesnikova, N.; Popov, A. Biodegradable polymer materials based on polyethylene and natural rubber: Acquiring, investigation, properties. Polymers 2022, 14, 2457. [Google Scholar] [CrossRef]
- Zia, J.; Paul, U.C.; Heredia-Guerrero, J.A.; Athanassiou, A.; Fragouli, D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymers 2019, 175, 137–145. [Google Scholar] [CrossRef]
- Teleky, B.-E.; Vodnar, D.C. Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers 2019, 11, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascuta, M.S.; Varvara, R.-A.; Teleky, B.-E.; Szabo, K.; Plamada, D.; Nemeş, S.-A.; Mitrea, L.; Martău, G.A.; Ciont, C.; Călinoiu, L.F.; et al. Polysaccharide-based edible gels as functional ingredients: Characterization, applicability, and human health benefits. Gels 2022, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.B. Polymer science before and after 1899: Notable developments during the lifetime of maurtis dekker. J. Macromol. Sci. Chem. 1989, 26, 1023–1032. [Google Scholar] [CrossRef]
- Mohana Jeya Valli, V.P.; Gnanavel, G.; Thirumarimurugan, M.; Kannadasan, D.T. A Review of alternate fuel from synthetic plastics waste. Elixir Chem. Eng. 2013, 54, 12215–12218. [Google Scholar]
- Mukai, K.; Doi, Y. Microbial degradation of polyesters. Prog. Ind. Microbiol. 1995, 32, 189–204. [Google Scholar]
- Kathiresan, K. Polyethylene and plastic degrading microbes in an Indian mangrove soil. Rev. Biol. Trop. 2003, 51, 629–634. [Google Scholar]
- Jeyasekara, R.; Harding, I.; Bowater, I.; Lornergan, G. Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J. Polym. Environ. 2005, 13, 231–251. [Google Scholar] [CrossRef]
- El-Naggar, M.M.A.; Farag, M.G. Physical and biological treatments of polyethylene–rice starch plastic films. J. Hazard. Mater. 2010, 176, 878–883. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. The role of plastic concerning the sustainable development goals: The literature point of view. J. Clean. Prod. 2021, 3, 100020. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L. Suh. S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Scalenghe, R. Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon 2018, 4, e00941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivan, A. New perspectives in plastic biodegradation. Curr. Opin. Biotechnol. 2011, 22, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Barrow, G.I.; Feltham, R.K.A. Cowan and Steel’s Manual for the Identification of Medical Bacteria; Cambridge University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Mihai, F.-C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic pollution, waste management issues, and circular economy opportunities in rural communities. Sustainability 2022, 14, 20. [Google Scholar] [CrossRef]
- Andrady, A.L. Persistence of plastic litter in the oceans. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Dijkstra, H.A.; van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 2021, 16, 054075. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Wayman, C.; Niemann, H. The fate of plastic in the ocean environment–A minireview. Environ. Sci. Processes Impacts 2021, 23, 198–212. [Google Scholar] [CrossRef]
- Spear, L.B.; Ainley, D.G.; Ribic, C.A. Incidence of plastic in seabirds from the tropical Pacific l984–1991: Relation with distribution of species, sex, age, season, year and body weight. Mar. Environ. Res. 1995, 40, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Frias, J.P.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese Coast. Mar. Pollut. Bull. Portugal. 2010, 60, 761–767. [Google Scholar] [CrossRef]
- Usha, R.; Sangeetha, T.; Palaniswamy, M. Screening of polyethylene degrading microorganisms from garbage soil. Int. J. Libyan. Agri. Res. Cent. 2011, 2, 200–204. [Google Scholar]
- Jung, B.-N.; Jung, H.-W.; Kang, D.-H.; Kim, G.-H.; Shim, J.-K. A Study on the Oxygen Permeability Behavior of Nanoclay in a Polypropylene/Nanoclay Nanocomposite by Biaxial Stretching. Polymers 2021, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Kubowicz, S.; Booth, A.M. Biodegradability of plastics: Challenges and misconceptions. Environ. Sci. Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef]
- Varyan, I.; Kolesnikova, N.; Xu, H.; Tyubaeva, P.; Popov, A. Biodegradability of polyolefin-based compositions: Effect of natural rubber. Polymers 2022, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Zeenat; Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics degradation by microbes: A sustainable approach. J. King Saud Univ. Sci. 2021, 33, 101538. [Google Scholar] [CrossRef]
- Di Mauro, E.; Rho, D.; Santato, C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics. Nat. Commun. 2021, 12, 3167. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, P.; Możejko-Ciesielska, J. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers 2021, 13, 1731. [Google Scholar] [CrossRef] [PubMed]
- Witt, U.; Muller, R.J.; Deckwer, W.D. Biodegradation behaviour and material properties of aliphatic/aromatic polyesters of commercial importance. J. Environ. Poly. Degrad. 1997, 15, 81–89. [Google Scholar] [CrossRef]
- Chandra, R.; Rustgi, R. Biodegradable Polymers. Prog. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Albinas, L.; Loreta, L.; Dalia, P. Micromycetes as deterioration agents of polymeric materials. Int. Biodeterior. Biodegra. 2003, 52, 233–242. [Google Scholar]
- Lee, B.; Pometto, A.L.; Fratzke, A.; Bailey, T.B. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol. 1991, 57, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.A.; Perveen, Q.; Ahmad, B.; Javed, I.; Razi-Ul-Hussnain, R.; Andleeb, S.; Atique, N.; Ghumro, P.; Ahmed, S.; Hameed, A. Studies on biodegradation of cellulose blended polyvinyl chloride films. Int. J. Agriculture. Biol. 2009, 57, 9–175. [Google Scholar]
- Gupta, S.B.; Amrita, G.; Chowdhury, T. Isolation and selection of stress tolerant plastic loving bacterial isolates from old plastic wastes. World. J. Agri. Sci. 2010, 6, 138–140. [Google Scholar]
- Mergaert, J.; Swings, J. Biodeversity of microorganisms that degrade bacterial and synthetic polyesters. J. Ind. Microbiol. 1996, 17, 463–469. [Google Scholar]
- Orhan, Y.; Buyukgungor, H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 2000, 45, 49–55. [Google Scholar] [CrossRef]
- Volke-Sepulveda, T.; Castaneda, G.S.; Rojas, M.G.; Manzur, A.; Torres, E.F. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J. Appl. Polym. Sci. 2002, 83, 305–314. [Google Scholar] [CrossRef]
- Clutario, T.P.; Cuevus, V.C. Colonization of plastic by Xylaria sp. Phili. J. Sci. 2001, 130, 89–95. [Google Scholar]
- Thilagavathy, S.S.; Gomathi, V. Isolation of Decomposing Fungi with Plastic Degrading Ability. M.Sc Dissertation, Tamil Nadu Agricultural University, Coimbatore, India, 2014. [Google Scholar]
- Griffin, G.L. Synthetic polymers and the living environment. Pure Appl. Chem. 1980, 52, 399–407. [Google Scholar] [CrossRef]
- Saminathan, P.; Sripriya, A.; Nalini, K.; Sivakumar, T.; Thangapandian, V. Biodegradation of plastics by pseudomonas putida isolated from garden soil samples. J. Adv. Bot. Zoolo. 2014, 1, 2348–7313. [Google Scholar]
- Glass, J.E.; Swift, G. Agricultural and Synthetic Polymers, Biodegradation and Utilization; ACS Symposium Series, 433; American Chemical Society: Washington, DC, USA, 1989; Volume 37, pp. 9–64. [Google Scholar]
- Kamal, M.R.; Huang, B. Natural and artificial weathering of polymers. In Handbook of Polymer Degradation; Hamid, S.H., Ami, M.B., Maadhan, A.G., Eds.; Marcel Dekker: New York, NY, USA, 1992; Volume 36, pp. 68–127. [Google Scholar]
- Johnson, K.E.; Pometto, A.L.; Nikolov, Z.L. Degradation of degradable starch polythene plastics in a compost environment. J. Appl. Environ. Microbiol. 1993, 59, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabannavar, A.; Bartha, R. Biodegradability of some food packaging materials in soil. Soil. Biol. Biochem. 1993, 25, 1469–1475. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Reinert, K.H.; Hogan, J.V.; Lord, W.V. Polymers as solid waste in municipal landfills. J. Air Waste Manage. Assoc. 1995, 43, 247–251. [Google Scholar] [CrossRef]
- Frazer, A.C. O-methylation and other transformations of aromatic compounds by acetogenicbacteria. In Acetogenesis; Drake, H.L., Ed.; Chapman & Hall: New York, NY, USA, 1994; Volume 120, pp. 445–483. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotech. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Pospisil, J.; Nespurek, S. Highlights in chemistry and physics of polymer stabilization. Macromol. Symp. 1997, 115, 143–163. [Google Scholar] [CrossRef]
- Akutsu, Y.; Nakajima-Kambe, T.; Nomura, N.; Nakahara, T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl. Environ. Microbiol. 1998, 64, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Ikada, E. Electron microscope observation of biodegradation of polymers. J. Environ. Polym. Degrad. 1999, 7, 197–201. [Google Scholar] [CrossRef]
- Prabhat, S.; Bhattacharyya, S.; Vishal, V.; Kalyan, R.K.; Vijai, K.; Pandey, K.N.; Singh, M. Studies on isolation and identification of active microorganisms during degradation of polyethylene/starch film. Int. Res. J. Environment Sci. 2013, 2, 83–88. [Google Scholar]
- Mueller, R.-J. Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochem. 2006, 41, 2124–2128. [Google Scholar] [CrossRef]
- Webb, E.C. Enzyme Nomenclature: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes; Academic Press Inc.: San Diego, CA, USA, 1992; Volume 7, pp. 1192–1194. [Google Scholar]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of polyesters by lipases. Nature 1977, 270, 76–78. [Google Scholar] [CrossRef]
- Sethuraman, A.; Akin, D.; Erikson, K. Plant-cell-wall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnol. Appl. Biochem. 1998, 27, 37–47. [Google Scholar] [CrossRef]
- Francis, D.V.; Thaliyakattil, S.; Cherian, L.; Sood, N.; Gokhale, T. Metallic nanoparticle integrated ternary polymer blend of PVA/Starch/Glycerol: A promising antimicrobial food packaging material. Polymers 2022, 14, 1379. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-L.; Tsai, Y.-T.; Tseng, W.-S.; Wu, J.-A.; Kuo, S.-L.; Chang, S.-L.; Huang, S.-J.; Liu, C.-T. Biodegradation of PBSA films by elite aspergillus isolates and farmland soil. Polymers 2022, 14, 1320. [Google Scholar] [CrossRef]
- Friné, V.-C.; Hector, A.-P.; Sergio Manuel, N.-D.; Estrella, N.-D.; Antonio, G.J. Development and characterization of a biodegradable PLA food packaging hold monoterpene–cyclodextrin complexes against Alternaria alternata. Polymers 2019, 11, 1720. [Google Scholar] [CrossRef]
- Prema, S.; Uma Maheswari Devi, P. Degradation of poly lactide plastic by mesophilic bacteria isolated from compost. Int. J. Rese. Pure. App. Microbiol. 2013, 3, 121–126. [Google Scholar]
Plastics | Applications |
---|---|
LDPE, LLDPE, and PVC | Films and Packaging |
PET, PVC, and HDPE | Bottles, Tubes, Pipes, and Insulation Molding |
PS, PP, and PVC | Tanks, Jugs, and Containers |
LDPE and LLDPE | Bags |
PU | Coating, Insulation, Paints, and Packing |
Isolates | Enzyme Activity (IUml-1) | |||
---|---|---|---|---|
40th DAI | ||||
Cellulase | Amylase | Lipase | Protease | |
Xtc1 | 0.54 ± 0.02 | 0.27 ± 0.01 | 2.91 ± 0.35 | 1.28 ± 0.12 |
Xtc4 | 0.46 ± 0.04 | 0.15 ± 0.02 | 2.84 ± 0.41 | 0.89 ± 0.10 |
Xtc8 | 0.34 ± 0.03 | 0.23 ± 0.01 | 1.75 ± 0.20 | 0.76 ± 0.08 |
Xtc12 | 0.42 ± 0.02 | 0.17 ± 0.02 | 2.80 ± 0.29 | 1.01 ± 0.13 |
Xtc20 | 0.39 ± 0.03 | 0.25 ± 0.03 | 2.37 ± 0.31 | 0.99 ± 0.10 |
MTCC 3669 | 0.48 ± 0.02 | 0.31 ± 0.02 | 2.78 ± 0.25 | 1.14 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatesan, R.; Santhamoorthy, M.; Alagumalai, K.; Haldhar, R.; Raorane, C.J.; Raj, V.; Kim, S.-C. Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview. Polymers 2022, 14, 4271. https://doi.org/10.3390/polym14204271
Venkatesan R, Santhamoorthy M, Alagumalai K, Haldhar R, Raorane CJ, Raj V, Kim S-C. Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview. Polymers. 2022; 14(20):4271. https://doi.org/10.3390/polym14204271
Chicago/Turabian StyleVenkatesan, Raja, Madhappan Santhamoorthy, Krishnapandi Alagumalai, Rajesh Haldhar, Chaitany Jayprakash Raorane, Vinit Raj, and Seong-Cheol Kim. 2022. "Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview" Polymers 14, no. 20: 4271. https://doi.org/10.3390/polym14204271
APA StyleVenkatesan, R., Santhamoorthy, M., Alagumalai, K., Haldhar, R., Raorane, C. J., Raj, V., & Kim, S. -C. (2022). Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview. Polymers, 14(20), 4271. https://doi.org/10.3390/polym14204271