Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Wastewater Samples
2.3. Synthesis of Magnetized Coagulants
2.4. Characterization of MC
2.4.1. Morphological and Elemental Examination (SEM/EDX)
2.4.2. Crystal Structure Analysis (XRD)
2.4.3. Surface Area Analysis (BET)
2.4.4. Functional and Molecular Examination (FTIR)
2.5. Coagulation
3. Results and Discussions
3.1. Characterization
3.1.1. Elemental Composition by Energy Disperse X-Ray (EDX) and SEM Analysis
3.1.2. Crystal Structure Analysis (XRD)
3.1.3. Surface Area Analysis (BET)
3.1.4. FTIR Analysis
3.2. Evaluation of Coagulant Types
3.3. Evaluation of Settling Time on Contaminants Removal
3.4. Comparison of Several Magnetized Coagulants Used in Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nimesha, S.; Hewawasam, C.; Jayasanka, D.; Murakami, Y.; Araki, N.; Maharjan, N. Effectiveness of natural coagulants in water and wastewater treatment. Glob. J. Environ. Sci. Manag. 2021, 8, 1–16. [Google Scholar]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S.; Chollom, M.N. Pre-treatment of industrial mineral oil wastewater using response surface methodology. Water Soc. IV 2017, 216, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Chollom, M.N.; Rathilal, S.; Swalaha, F.M.; Bakare, B.F.; Tetteh, E.K. Removal of antibiotics during the anaerobic digestion of slaughterhouse wastewater. Int. J. Sustain. Dev. Plan. 2020, 15, 335–343. [Google Scholar] [CrossRef]
- Sibiya, N.P.; Rathilal, S.; Tetteh, E.K. Coagulation Treatment of Wastewater: Kinetics and Natural Coagulant Evaluation. Molecules 2021, 26, 698. [Google Scholar] [CrossRef] [PubMed]
- Zahrim, A.; Hilal, N. Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration. Water Resour. Ind. 2013, 3, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Siddique, M.; Soomro, S.A.; Aziz, S.; Jatoi, A.S.; Mengal, A.; Mahar, H. Removal of turbidty from turbid water by bio-cogulant prepared from walnut shell. J. Appl. Emerg. Sci. 2016, 6, 66–68. [Google Scholar]
- Nizamuddin, S.; Siddiqui, M.; Mubarak, N.; Baloch, H.A.; Abdullah, E.; Mazari, S.A.; Griffin, G.; Srinivasan, M.; Tanksale, A. Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. Nanoscale Mater. Water Purif. 2019, 447–472. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2018, 17, 145–155. [Google Scholar] [CrossRef]
- Saifuddin, N.; Dinara, S. Pretreatment of palm oil mill effluent (POME) using magnetic chitosan. E-J. Chem. 2011, 8, S67–S78. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Huang, X.; Yu, Z.; Ping Chen, P.; Cao, X. Application progress of enhanced coagulation in water treatment. RSC Adv. 2020, 10, 20231. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Saini, G. Use of natural coagulants for industrial wastewater treatment. Glob. J. Environ. Sci. Manag. 2020, 6, 553–578. [Google Scholar]
- Kumar, M.M.; Karthikeyan, R.; Anbalagan, K.; Bhanushali, M.N. Coagulation process for tannery industry effluent treatment using Moringa oleifera seeds protein: Kinetic study, pH effect on floc characteristics and design of a thickener unit. Sep. Sci. Technol. 2016, 51, 2028–2037. [Google Scholar] [CrossRef]
- Nath, A.; Mishra, A.; Pande, P.P. A review natural polymeric coagulants in wastewater treatment. Mater. Today Proc. 2020, 46, 6113–6117. [Google Scholar] [CrossRef]
- Muniza, G.L.; Borges, A.C.; da Silva, T.C.F.; Batista, R.O.; de Castro, S.R. Chemically enhanced primary treatment of dairy wastewater using chitosan obtained from shrimp wastes: Optimization using a Doehlert matrix design. Environ. Technol. 2020, 43, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.K.F.S.; Almeida, C.A.; Manholer, D.D.; Geraldino, H.C.L.; de Souza, M.T.F.; Garcia, J.C. Review of utilization plant-based coagulants as alternatives to textile wastewater treatment. In Detox Fashion; Springer: Berlin/Heidelberg, Germany, 2017; pp. 27–79. [Google Scholar]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Banana pith as a natural coagulant for polluted river water. Ecol. Eng. 2016, 95, 699–705. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S. Application of magnetized nanomaterial for textile effluent remediation using response surface methodology. Mater. Today Proc. 2020, 38, 700–711. [Google Scholar] [CrossRef]
- Muniz, G.L.; Borges, A.C.; da Silva, T.C.F. Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. Sci. Total Environment. 2020, 77, 140864. [Google Scholar] [CrossRef]
- Dos Santos, T.R.T.; Silva, M.F.; de Andrade, M.B.; Vieira, M.F.; Bergamasco, R. Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: Optimization of operational conditions and reuse evaluation. Desalination Water Treat. 2018, 106, 226–237. [Google Scholar] [CrossRef]
- Mateus, G.A.P.; dos Santos, T.R.T.; Sanches, I.S.; Silva, M.F.; de Andrade, M.B.; Paludo, M.P.; Gomes, R.G.; Bergamasco, R. Evaluation of a magnetic coagulant based on Fe3O4 nanoparticles and Moringa oleifera extract on tartrazine removal: Coagulation-adsorption and kinetics studies. Environ. Technol. 2018, 41, 1648–1663. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.-C.; Ho, Y.-C.; Chong, F.-K. Synthesis and application of a novel composite coagulant aid from rice starch and sesbania seed gum for water treatment. Malays. J. Chem. 2021, 23, 7–14. [Google Scholar]
- Muniza, G.L.; Borges, A.C.; da Silva, T.C.F. Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation. J. Water Process Eng. 2020, 37, 101453. [Google Scholar] [CrossRef]
- Dos Santos, T.R.T.; Mateus, G.A.P.; Silva, M.F.; Miyashiro, C.S.; Nishi, L.; de Andrade, M.B.; Fagundes-Klen, M.R.; Gomes, R.G.; Bergamasco, R. Evaluation of Magnetic Coagulant (α-Fe2O3-MO) and its Reuse in Textile Wastewater Treatment. Water Air Soil Pollut. 2018, 229, 92. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.I.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health 2020, 17, 9312. [Google Scholar] [CrossRef]
- Aboelfetoh, E.F.; Aboubaraka, A.E.; Ebeid, E.-Z.M. Binary coagulation system (graphene oxide/chitosan) for polluted surface water treatment. J. Environ. Manag. 2021, 288, 112481. [Google Scholar] [CrossRef]
- Devi, M.G.; Dumaran, J.J.; Feroz, S. Dairy wastewater treatment using low molecular weight crab shell chitosan. J. Inst. Eng. Ser. E 2012, 93, 9–14. [Google Scholar] [CrossRef]
- Chua, S.-C.; Chong, F.-K.; Yen, C.-H.; Ho, Y.-C. Valorization of conventional rice starch in drinking water treatment and optimization using response surface methodology (RSM). Chem. Eng. Commun. 2019, 208, 613–623. [Google Scholar] [CrossRef]
- Usefi, S.; Asadi-Ghalhari, M. Modeling and optimization of the coagulation–flocculation process in turbidity removal from aqueous solutions using rice starch. Pollution 2019, 5, 623–636. [Google Scholar]
- Teh, C.Y. Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: Treatment performance and flocs characterization. Ecol. Eng. 2014, 71, 509–519. [Google Scholar] [CrossRef]
- Amran, A.H.; Zaidi, N.S.; Muda, K.; Loan, L.W. Effectiveness of natural coagulant in coagulation process: A review. Int. J. Environ. Sci. Technol. 2018, 7, 34–37. [Google Scholar]
- Sibiya, N.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Model prediction of coagulation by magnetised rice starch for wastewater treatment using response surface methodology (RSM) with artificial neural network (ANN). Scientific Afr. 2022, 17, e01282. [Google Scholar] [CrossRef]
- Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A.S.; O’Neill, J.G. A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water—An alternative sustainable solution for developing countries. Phys. Chem. Earth 2010, 35, 798–805. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2012; Available online: https://www.standardmethods.org/doi/book/10.2105/SMWW.2882?gclid=CjwKCAiA25v_BRBNEiwAZb4-ZRdKz6ceq6 (accessed on 15 March 2020).
- Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S.; Armar, E.K.; Adedeji, J.; Chollom, M.N.; Chetty, M. Effect of engineered biomaterials and magnetite on wastewater treatment: Biogas and kinetic evaluation. Polymers 2021, 13, 4323. [Google Scholar] [CrossRef]
- Morsi, R.E.; Al-Sabagh, A.M.; Moustafa, Y.M.; ElKholy, S.G.; Sayed, M.S. Polythiophene modified chitosan/magnetite nanocomposites for heavy metals and selective mercury removal. Egypt. J. Pet. 2018, 27, 1077–1085. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Amo-Duodu, G.; Rathilal, S. Biogas production from wastewater: Comparing biostimulation impact of magnetised-chitosan and -titania chitosan. Mater. Today: Proc. 2022, 62, S85–S90. [Google Scholar]
- Nechita, P. Applications of chitosan in wastewater treatment. Biol. Act. Appl. Mar. Polysacch. 2017, 1, 209–228. [Google Scholar]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Deravi, L.F. Piezoelectric Inkjet Printing of Multicomposite Biomaterials; Vanderbilt University: Nashville, TN, USA, 2009. [Google Scholar]
- Rao, C.N.R.; Nath, M. Inorganic nanotubes. In Advances in Chemistry: A Selection of CNR Rao’s Publications (1994–2003); World Scientific: Singapore, 2003; pp. 310–333. [Google Scholar]
- Taspika, M.; Desiati, R.D.; Mahardika, M.; Sugiarti, E.; Abral, H. Influence of TiO2/Ag particles on the properties of chitosan film. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 015017. [Google Scholar] [CrossRef]
- Mohanasrinivasan, V.; Paliwal, J.S.; Selvarajan, E.; Mishra, M.; Singh, S.K.; Suganthi, V.; Devi, C.S. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. Biotechnology 2013, 4, 167–175. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT Food Sci. Technol. 2020, 125, 109227. [Google Scholar] [CrossRef]
- Karp, S.G.; Pagnoncelli, M.G.B.; Prado, F.; de Oliveira Penha, R.; Junior, A.I.M.; Kumlehn, G.S.; Soccol, C.R. Chapter5-Starch. Biomass Biofuels Biochem. 2021, 75–100. [Google Scholar]
- Azanza, M.P.V.; Alejandro, C.B.S.; Jim, J.T. Impact of Processing Stages and Additives on the Structural Quality of Cornstarch Bihon-Type Noodles. Philipp. J. Sci. 2021, 150, 1451–1460. [Google Scholar]
- Rashid, H.; Mansoor, M.A.; Haider, B.; Nasir, R.; Hamid, S.B.A.; Abdulrahman, A. Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method. Sep. Sci. Technol. 2020, 55, 207–1215. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, J.; Dey, A.; Bomans, P.H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N.A.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314. [Google Scholar] [CrossRef]
- Dhar, P.K.; Shaha, P.; Hasan, M.K; Amin, M. K.; Haque, M.R. Green synthesis of magnetite nanoparticles using Lathyrus sativus peel extract and evaluation of their catalytic activity. Clean. Eng. Technol. 2021, 3, 100117. [Google Scholar] [CrossRef]
- Jana, S.; Trivedi, M.K.; Tallapragada, R.M.; Branton, A.; Trivedi, D.; Nayak, G.; Mishra, R.K. Characterization of Physicochemical and Thermal Properties of Chitosan and Sodium Alginate after Biofield Treatment. Pharm. Anal. Acta 2015, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starchechitosan blend biodegradable film. Sci. Drirect 2008, 41, 1633–1641. [Google Scholar]
- Dey, S.C.; Al-Amin, M.; Rashid, T.U.; Sultan, M.Z.; Ashaduzzaman, M.; Sarker, M.; Shamsuddin, S.M. Preparation, characterization and performance evaluation of chitosan as an adsorbent for re. Int. J. Latest Res. Eng. Technol. 2016, 2, 52–62. [Google Scholar]
- Billah, R.E.K.; Abdellaoui, Y.; AnfarZakaria; Giácoman-Vallejos, G.; Agunaou, M.; Soufi, A. Synthesis and Characterization of Chitosan/Fluorapatite Composites for the Removal of Cr (VI) from Aqueous Solutions and Optimized Parameters. Water Air Soil Pollut. 2020, 231, 163. [Google Scholar] [CrossRef]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bule’on, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Tang, M.; Wu, W.; Ding, W.; Ding, B.; Wang, X. Study on inhibition effects and mechanism of wheat starch retrogradation by polyols. Food Hydrocoll. 2021, 121, 106996. [Google Scholar] [CrossRef]
- Shih, F.; King, J.; Daigle, K.; An, H.-J.; Ali, R. Physicochemical Properties of Rice Starch Modified by Hydrothermal Treatments. Cereal Chem. 2007, 84, 527–531. [Google Scholar] [CrossRef]
- Matmin, J.; Affendi, I.; Ibrahim, S.I.; Endud, S. Additive-free rice starch-assisted synthesis of spherical nanostructured hematite for degradation of dye contaminant. Nanomaterials 2018, 8, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, J.S.; Parimalavalli, R.; Jagannadham, K. Impact of Cross-Linking on Physico-Chemical and Functional Properties of Cassava Starch. Int. J. Adv. Res. 2014, 2, 284–289. [Google Scholar]
- Mosaddegh, E.; Hassankhani, A. Application and characterization of eggshell as a new biodegradable and heterogeneous catalyst in green synthesis of 7,8-dihydro-4H-chromen-5(6H)-ones. Catal. Commun. 2013, 33, 70–75. [Google Scholar] [CrossRef]
- Zhang, L.; He, R.; Gu, H.-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 2006, 253, 2611–2617. [Google Scholar] [CrossRef]
- Yew, Y.P.; Shameli, K.; Miyake, M.; Kuwano, N.; Khairudin, N.B.B.A.; Mohamad, S.E.B.; Lee, K.X. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale Res. Lett. 2016, 11, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.-R.; Ansari, S.; Bahmaninia, H.; Ostadhassan, M.; Norouzi-Apourvari, S.; Hemmati-Sarapardeh, A.; Schaffie, M.; Ranjbar, M. Experimental Measurement and Equilibrium Modeling of Adsorption of Asphaltenes from Various Origins onto the Magnetite Surface under Static and Dynamic Conditions. ACS Omega 2021, 6, 24256–24268. [Google Scholar] [CrossRef] [PubMed]
- Yuvakkumar, R.; Hong, S. Green synthesis of spinel magnetite iron oxide nanoparticles. Adv. Mater. Res. 2014, 1051, 39–42. [Google Scholar] [CrossRef]
- El Knidri, H.; El Khalfaouy, R.; Laajeb, A.; Addaou, A.; Lahsini, A. Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf. Environ. Prot. 2016, 104, 395–405. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Gough, C.R.; Liu, Q.; Hu, X. Dual-Crystallizable Silk Fibroin/Poly (L-lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends. Int. J. Mol. Sci. 2021, 22, 1871. [Google Scholar] [CrossRef] [PubMed]
- Danko, M.; Kronekova, Z.; Krupa, I.; Tkac, J.; Matúš, P.; Kasak, P. Exchange Counterion in Polycationic Hydrogels: Tunability of Hydrophobicity, Water State, and Floating Capability for a Floating pH Device. Gels 2021, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Villadiego, J.; Garcia-Echeverri, J.; Mejia, M.V.; Pasqualino, J.; Meza-Catellar, P.; Lambis, H. Chemical modification and characterization of starch derived from plantain (Musa paradisiaca) Peel waste, as a source of biodegradable material. Chem. Eng. Trans. 2018, 65, 763–768. [Google Scholar]
- Talekar, S.; Pandharbale, A.; Ladole, M.; Nadar, S.; Mulla, M.; Japhalekar, K.; Pattankude, K.; Arage, D. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol. 2013, 147, 269–275. [Google Scholar] [CrossRef]
- Fan, D.; Ma, W.; Wang, L.-J.; Huang, J.-C.H.; Zhao, J.; Zhang, H.; Chen, W. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch 2012, 64, 598–606. [Google Scholar] [CrossRef]
- Hatamie, A.; Parham, H.; Zargar, B.; Heidari, Z. Evaluating magnetic nano-ferrofluid as a novel coagulant for surface water treatment. J. Mol. Liq. 2016, 219, 694–702. [Google Scholar] [CrossRef]
- Choya, S.Y.; Prasada, K.M.N.; Wua, T.Y.; Raghunandan, M.E.; Phang, S.-M.; Juane, J.C.; Ramanan, R.N. Separation of Chlorella biomass from culture medium by flocculation with rice starch. Algal Res. 2018, 162–172. [Google Scholar] [CrossRef]
- Huzir, N.M.; Aziz, M.M.A.; Ismail, S.B.; Mahmood, N.A.N.; Umor, N.A.; Muhammad, S.A.F.S. Optimization of coagulation-flocculationprocess for the palm oil milleffluent treatment by using rice husk ash. Ind. Crops Prod. 2019, 139, 111482. [Google Scholar] [CrossRef]
- Asharuddin, S.M.; Othman, N.; Zin, N.S.M.; Tajarudin, H.A.; Din, M.F.; Kumar, V. Performance assessment of cassava peel starch and alum as dual coagulant for turbidity removal in dam water. Int. J. Integr. Eng. 2018, 10, 185–192. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Chiang, P.-C.; Shah, K.J. Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water Energy Nexus 2019, 2, 25–36. Available online: https://www.researchgate.net/profile/Xiaopeng-Ge/publication/6620675_Optimized_Coagulation_of_High_Alkalinity_Low_Temperature_and_Particle_Water_pH_Adjustment_and_Polyelectrolytes_as_Coagulant_Aids/links/5e65b9ca4585153fb3ce0c56/Optimized-Coagulation-of-High-Alkalinity-Low-Temperature-and-Particle-Water-pH-Adjustment-and-Polyelectrolytes-as-Coagulant-Aids.pdf (accessed on 26 February 2021). [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Gallegos, M.; Reyes-Mazzoco, R.; Flores-Cervantes, D.; Jarayathne, A.; Goonetilleke, A.; Bandala, E.R.; Sanchez-Salas, J. Role of organic matter, nitrogen and phosphorous on granulation and settling velocity in wastewater treatment. J. Water Process Eng. 2021, 40, 101967. [Google Scholar] [CrossRef]
- Momeni, M.M.; Kahforoushan, D.; Abbasi, F.; Ghanbarian, S. Using chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design. J. Environ. Manag. 2018, 211, 347–355. [Google Scholar] [CrossRef]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. J. Clean. Prod. 2017, 164, 1124–1134. [Google Scholar] [CrossRef]
- Freitas, T.; Oliveira, V.; De Souza, M.; Geraldino, H.; Almeida, V.; Fávaro, S.; Garcia, J. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Ind. Crops Prod. 2015, 76, 538–544. [Google Scholar] [CrossRef]
- Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Raghunandan, M.E.; Yang, B.; Phang, S.-M.; Ramanan, R.N. Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environ. Sci. Pollut. Res. Int. 2017, 24, 2876–2889. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, N.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Response surface optimisation of a magnetic coagulation process for wastewater treatment via Box-Behnken. Mater. Today Proc. 2022, 42, S121–S126. [Google Scholar] [CrossRef]
- Mateus, G.A.P.; Paludo, M.P.; dos Santos, T.R.T.; Silva, M.F.; Nishi, L.; Fagundes-Klen, M.R.; Gomes, R.G.; Bergamasco, R. Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. J. Environ. Chem. Eng. 2018, 6, 4084–4092. [Google Scholar] [CrossRef]
Contaminants | Values | Standard Deviation |
---|---|---|
Turidity (NTU) | 45.60 | 0.2910 |
Color (Pt. Co) | 315 | 0.098 |
Absorbance (%) | 73.40 | 0.151 |
Chemical oxgyen demand (COD) (mg/L) | 352 | 0.816 |
Total suspended solids (TSS) (mg/L) | 68.20 | 0.748 |
Chemicals | Concentration (M) | Molar Mass (g/mol) | Mass (g) |
---|---|---|---|
FeCl3 6H2O | 0.4 | 270.29 | 108.21 |
FeSO4 7H2O | 0.2 | 287.55 | 55.61 |
NaOH | 3 | 39.997 | 199.99 |
Ratios of Magnetized Coagulants (MC) | CF (g) | RF (g) | ||
---|---|---|---|---|
CS (g) | F (g) | R (g) | F (g) | |
1:1 | 5 | 5 | 5 | 5 |
2:1 | 6.667 | 3.333 | 6.667 | 3.333 |
1:2 | 3.333 | 6.667 | 3.333 | 6.667 |
Elements | C | O | S | Fe | Na | P | K | Cl | Ca |
---|---|---|---|---|---|---|---|---|---|
Weight | % | % | % | % | % | % | % | % | % |
Magnetite | 10.36 ± 6.90 | 38.43 ± 17.12 | 9.72 ± 3.31 | 39.13 ± 14.39 | - | - | - | 2.37 ± 1.64 | |
Chitosan | 92.89 ± 9.73 | 6.86 ± 9.39 | - | - | 0.25 ± 0.34 | - | - | - | - |
Rice starch | 84.55 ± 1.68 | 14.62 ± 1.91 | - | - | - | 0.43 ± 0.29 | 0.40 ± 0.15 | - | - |
Elements | C | O | S | Fe | Na | P | K | Cl | Ca |
---|---|---|---|---|---|---|---|---|---|
Weight | % | % | % | % | % | % | % | % | % |
CF (1:2) | - | 27.12 ± 13.15 | - | 67.32 ± 18.88 | 3.36 ± 4.29 | - | - | 2.20 ± 3.09 | |
CF (1:1) | - | 22.67 ± 14.13 | - | 74.80 ± 15.81 | 1.67 ± 1.21 | - | - | 0.80 ± 1.18 | 0.07 ± 0.16 |
CF (2:1) | - | 32.83 ± 8.13 | 0.82 ± 0.64 | 57.44 ± 14.2 | 6.37 ± 4.83 | - | - | 2.54 ± 2.32 | |
RF (1:2) | - | 42.81 ± 8.99 | 13.10 ± 2.60 | 26.32 ± 5.61 | - | - | 2.14 ± 0.38 | 15.68 ± 1.92 | - |
RF (1:1) | 30.23 ± 13.32 | 34.44 ± 15.87 | 5.54 ± 3.74 | 23.34 ± 11.98 | - | - | 2.14 ± 0.38 | 6.44 ± 5.29 | - |
RF (2:1) | 64.31 ± 15.02 | 24.48 ± 5.40 | 0.83 ± 0.25 | 7.04 ± 8.24 | - | - | 0.55 ± 0.27 | 2.99 ± 2.76 | - |
2θ (Degree) | Miller Indices Plane (hkl) | dhkl (nm) | Crystal Structure | Nanostructure | JCPDS Pattern |
---|---|---|---|---|---|
24.482 | (225) | 1.988 | Face-centered cubic | Sylvite | 00-41-1476 |
46.8 | (148) | 3.157 | Rhombohedral | Mikasaite | 00-047-1774 |
21.398 | (14) | 3.202 | Monoclinic | Ferrimagnetite | 00-070-2091 |
48.491 | (12) | 2.106 | Monoclinic | Clinoptilolite | 01-071-1425 |
51.44 | (44) | 2.162 | Base-centered Orthohombic | Sodium nitrate | 01-075-2073 |
27.335 | (225) | 2.163 | Face-centered cubic | Halite (NaCl) | 00-005-0628 |
32.497 | (29) | 2.263 | Orthohombic | Thermonatrite | 00-008-0448 |
20.212 | (13) | 1.96 | Monoclinic | Iron chloride hydrate | 00-016-0123 |
35.525 | (227) | 4.523 | Face-centered cubic | Magnesioferrite | 00-017-0464 |
35.423 | (227) | 5.197 | Face-centered cubic | Magnetite (Fe3O4) | 00-019-0629 |
17.374 | (160) | 3.065 | Rhombohedral | Hydronium jarosite | 00-031-0650 |
33.153 | (104) | 5.27 | Rhombohedral | Hematite (α-Fe2O3) | 00-033-0664 |
24.717 | (148) | 3.06 | Rhombohedral | Mikasaite | 00-033-0679 |
35.631 | (110) | 4.858 | Cubic | Maghemite (y-Fe2O3) | 00-039-1346 |
Sample/(s) | SBET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
Magnetite | 27.597 | 0.0080 | 1.4840 |
Rice starch | 1.267 | 0.0020 | 6.7600 |
RF (1:1) | 31.438 | 0.0015 | 1.6102 |
RF (2:1) | 30.021 | 0.0012 | 1.6098 |
RF (1:2) | 29.388 | 0.0010 | 1.5418 |
Chitosan | 1.2010 | 0.0007 | 5.4180 |
CF (1:1) | 18.773 | 0.0008 | 4.5560 |
CF (2:1) | 16.291 | 0.0008 | 4.5110 |
CF (1:2) | 13.918 | 0.0004 | 3.7361 |
Contaminant | Removal Percentage (%) | |||||
---|---|---|---|---|---|---|
CF (1:1) | CF (1:2) | CF (2:1) | RF (1:1) | RF (1:2) | RF (2:1) | |
Phosphate | 86.16 | 81.92 | 79.86 | 92.98 | 90.94 | 88.83 |
Color | 76.30 | 76.09 | 74.73 | 82.54 | 79.05 | 80.69 |
Absorbance | 92.97 | 94.72 | 92.27 | 95.58 | 94.97 | 94.37 |
Magnetized Coagulant | Operating Conditions | Contaminants Removal (%) | Reference |
---|---|---|---|
Magnetized moringa oleifera | 30 min settling time | 68.33% color | [83] |
Magnetized alum | 50 min magnetic exposure | 85% turbidity 82% color | [18] |
Magnetized chitosan | pH = 6 370 mg/L dosage | 97.7% TSS 91.70% COD 92.70% turbidity | [10] |
Magnetised rice starch | 17.33 settling time 3.40 g dosage | 69.96% turbidity 45.51% phosphate | [82] |
RF (1:1) | 20 min settling time 4 g dosage | 84.76% color 53.93% COD 92.37% phosphate 85.33% turbidity | This study |
Magnetized eggshell | 30 min settling time | 94.86% TSS 92.56% turbidity 96.24% color | [5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation. Polymers 2022, 14, 4342. https://doi.org/10.3390/polym14204342
Sibiya NP, Amo-Duodu G, Tetteh EK, Rathilal S. Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation. Polymers. 2022; 14(20):4342. https://doi.org/10.3390/polym14204342
Chicago/Turabian StyleSibiya, Nomthandazo Precious, Gloria Amo-Duodu, Emmanuel Kweinor Tetteh, and Sudesh Rathilal. 2022. "Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation" Polymers 14, no. 20: 4342. https://doi.org/10.3390/polym14204342
APA StyleSibiya, N. P., Amo-Duodu, G., Tetteh, E. K., & Rathilal, S. (2022). Effect of Magnetized Coagulants on Wastewater Treatment: Rice Starch and Chitosan Ratios Evaluation. Polymers, 14(20), 4342. https://doi.org/10.3390/polym14204342