Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods—Preparation of BSEA-Modified Epoxy Resin
2.3. Characterization Methods
3. Results and Discussion
3.1. Liquid Oxygen Compatibility of EP/BCI/BSEA Composites
3.1.1. Results of Liquid Oxygen Compatibility
3.1.2. XPS Analysis before and after 98J LOT
3.1.3. Section Morphology Analysis after the 98J LOT
3.2. Mechanical Properties of EP/BCI/BSEA Composites
3.2.1. Bending Properties
3.2.2. Fracture Toughness
3.2.3. Impact Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Wang, H.; Ma, B.; Xu, B.; Qu, L.; Fang, D.; Yang, Y. Enhancing cryogenic mechanical properties of epoxy resins toughened by biscitraconimide resin. Compos. Sci. Technol. 2022, 220, 109252. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Yuan, Y.; Liu, X.; Sun, T.; Wu, Z. Study of the epoxy/amine equivalent ratio on thermal properties, cryogenic mechanical properties, and liquid oxygen compatibility of the bisphenol A epoxy resin containing phosphorus. High Perform. Polym. 2019, 32, 429–443. [Google Scholar] [CrossRef]
- Tapeinos, I.G.; Zarouchas, D.S.; Bergsma, O.K.; Koussios, S.; Benedictus, R. Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part I—Tank pressure window based on progressive failure analysis. Int. J. Hydrogen Energy 2019, 44, 3917–3930. [Google Scholar] [CrossRef]
- Liu, N.; Ma, B.; Liu, F.; Huang, W.; Xu, B.; Qu, L.; Yang, Y. Progress in research on composite cryogenic propellant tank for large aerospace vehicles. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106297. [Google Scholar] [CrossRef]
- Morino, Y.; Shimoda, T.; Morimoto, T.; Ishikawa, T.; Aoki, T. Applicability of CFRP materials to the cryogenic propellant tank for reusable launch vehicle (RLV). Adv. Compos. Mater. 2001, 10, 339–347. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Hou, Z.; Li, B.; Cai, H. A phosphorus-containing imidazole derivative towards the liquid oxygen compatibility and toughness of epoxy resin. RSC Adv. 2022, 12, 7046–7054. [Google Scholar] [CrossRef]
- Huang, C.; Lei, Y.J. Research Progress on Design of Composite Cryogenic Tank in Large Launch Vehicle. Aerosp. Mater. Technol. 2015, 45, 1–7. [Google Scholar]
- Qi, Y.; Jiang, D.; Ju, S.; Zhang, J.; Cui, X. Determining the interphase thickness and properties in carbon fiber reinforced fast and conventional curing epoxy matrix composites using peak force atomic force microscopy. Compos. Sci. Technol. 2019, 184, 107877. [Google Scholar] [CrossRef]
- Shi, X.-H.; Chen, L.; Zhao, Q.; Long, J.-W.; Li, Y.-M.; Wang, Y.-Z. Epoxy resin composites reinforced and fire-retarded by surficially-treated carbon fibers via a tunable and facile process. Compos. Sci. Technol. 2020, 187, 107945. [Google Scholar] [CrossRef]
- Kim, J.; Cha, J.; Chung, B.; Ryu, S.; Hong, S.H. Fabrication and mechanical properties of carbon fiber/epoxy nanocomposites containing high loadings of noncovalently functionalized graphene nanoplatelets. Compos. Sci. Technol. 2020, 192, 108101. [Google Scholar] [CrossRef]
- Zhan, L.; Guan, C.; Huang, C.; Yang, X. Analysis of research status of composite cryotank for space. Aeronaut Manuf Technol 2019, 62, 79–87. [Google Scholar]
- Peng, C.; Li, J.; Wu, Z.; Peng, W.; Zhou, D. Investigating into the liquid oxygen compatibility of a modified epoxy resin containing silicon/phosphorus and its mechanical behavior at cryogenic temperature. RSC Adv. 2016, 6, 38300–38309. [Google Scholar] [CrossRef]
- Rankin, S.M.; Moody, M.K.; Naskar, A.K.; Bowland, C.C. Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles. Compos. Sci. Technol. 2020, 201, 108491. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Xian, G.; Hong, S. Effect of thermal exposure on carbon fiber reinforced composites used in civil infrastructure rehabilitation. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106570. [Google Scholar] [CrossRef]
- Liang, J.; Bai, M.; Gu, Y.; Wang, S.; Li, M.; Zhang, Z. Enhanced electromagnetic shielding property and anisotropic shielding behavior of corrugated carbon fiber felt composite and its sandwich structure. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106481. [Google Scholar] [CrossRef]
- Qu, L.; Zhang, C.; Li, P.; Dai, X.; Xu, T.; Sui, Y.; Gu, J.; Dou, Y. Improved thermal properties of epoxy resin modified with polymethyl methacrylate-microencapsulated phosphorus-nitrogen-containing flame retardant. RSC Adv. 2018, 8, 29816–29829. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Sui, Y.; Zhang, C.; Li, P.; Dai, X.; Xu, B.; Fang, D. POSS-functionalized graphene oxide hybrids with improved dispersive and smoke-suppressive properties for epoxy flame-retardant application. Eur. Polym. J. 2019, 122, 109383. [Google Scholar] [CrossRef]
- Liu, X.-F.; Liu, B.-W.; Luo, X.; Guo, D.-M.; Zhong, H.-Y.; Chen, L.; Wang, Y.-Z. A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chem. Eng. J. 2019, 380, 122471. [Google Scholar] [CrossRef]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2013, 114, 1082–1115. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Xu, M.; Li, Z.; Hu, Y.; Li, B. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos. Part B Eng. 2019, 167, 422–433. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Cai, H.; Hu, J.; Wang, Y.; Wang, J. Liquid oxygen compatibility and toughness of epoxy resin modified by a novel hyperbranched polysiloxane. Mater. Res. Express 2019, 6, 085338. [Google Scholar] [CrossRef]
- Biswas, B.; Kandola, B.K. The effect of chemically reactive type flame retardant additives on flammability of PES toughened epoxy resin and carbon fiber-reinforced composites. Polym. Adv. Technol. 2011, 22, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Yang, J.; Liu, Y.; Xiao, H.; Fu, S.-Y. Simultaneously Enhanced Cryogenic Tensile Strength, Ductility and Impact Resistance of Epoxy Resins by Polyethylene Glycol. J. Mater. Sci. Technol. 2014, 30, 90–96. [Google Scholar] [CrossRef]
- Yi, X.F.; Mishra, A.K.; Kim, N.H.; Ku, B.-C.; Lee, J.H. Synergistic effects of oxidized CNTs and reactive oligomer on the fracture toughness and mechanical properties of epoxy. Compos. Part A Appl. Sci. Manuf. 2013, 49, 58–67. [Google Scholar] [CrossRef]
- Mill, T.; Chamberlain, D.; Stringham, R.; Kirshen, N.; Irwin, K. Investigation of the Reactivity of Organic Materials in Liquid Oxygen; NASA: Washington, DC, USA, 1970. [Google Scholar]
- Li, S.; Li, J.; Cui, Y.; Ye, J.; Chen, D.; Yuan, Y.; Liu, X.; Liu, M.; Peng, C.; Wu, Z. Liquid oxygen compatibility of epoxy matrix and carbon fiber reinforced epoxy composite. Compos. Part A Appl. Sci. Manuf. 2021, 154, 106771. [Google Scholar] [CrossRef]
- Bowden, F.P.; Yoffe, A.D. The Initiation and Growth of Explosions in Liquids and Solids. Aeronaut. J. 1952, 56, 104–808. [Google Scholar]
- Amster, A.; Chamberlain, D.; Schulenberg, F.; Stringham, R. Investigation of Reactivity of Launch Vehicle Materials with Liquid Oxygen Annual Report; NASA: Washington, DC, USA, 1967. [Google Scholar]
- Ai, Y.-F.; Xia, L.; Pang, F.-Q.; Xu, Y.-L.; Zhao, H.-B.; Jian, R.-K. Mechanically strong and flame-retardant epoxy resins with anti-corrosion performance. Compos. Part B Eng. 2020, 193, 108019. [Google Scholar] [CrossRef]
- Xie, W.; Huang, S.; Tang, D.; Liu, S.; Zhao, J. Correction: Synthesis of a furfural-based DOPO-containing co-curing agent for fire-safe epoxy resins. RSC Adv. 2020, 10, 8054. [Google Scholar] [CrossRef] [Green Version]
- Salmeia, K.A.; Gaan, S. An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degrad. Stab. 2015, 113, 119–134. [Google Scholar] [CrossRef]
- Jian, R.; Wang, P.; Xia, L.; Zheng, X. Effect of a novel P/N/S-containing reactive flame retardant on curing behavior, thermal and flame-retardant properties of epoxy resin. J. Anal. Appl. Pyrolysis 2017, 127, 360–368. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Wang, Z. Liquid oxygen compatibility and thermal stability of bisphenol A and bisphenol F epoxy resins modified by DOPO. Polym. Adv. Technol. 2014, 26, 153–159. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Wu, Z.; Wang, Z. The effect of 10-(2, 5-dihydroxyphenyl)-9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on liquid oxygen compatibility and cryogenic mechanical properties of epoxy resins. High Perform. Polym. 2016, 28, 820–830. [Google Scholar] [CrossRef]
- Wang, H.; Peng, C.; Li, S.; Liu, X.; Wu, Z. Improvement of the liquid oxygen compatibility of epoxy via the addition of surface-modified boehmite. J. Appl. Polym. Sci. 2018, 135. [Google Scholar] [CrossRef]
- Liu, N.; Wang, H.; Xu, B.; Qu, L.; Fang, D. Cross-linkable phosphorus/nitrogen-containing aromatic ethylenediamine endowing epoxy resin with excellent flame retardancy and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107145. [Google Scholar] [CrossRef]
- Wu, Z.; Li, S.; Liu, M.; Wang, H.; Wang, Z.; Liu, X. Study on liquid oxygen compatibility of bromine-containing epoxy resins for the application in liquid oxygen tank. Polym. Adv. Technol. 2015, 27, 98–108. [Google Scholar] [CrossRef]
- Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y.-W. Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos. Part A Appl. Sci. Manuf. 2017, 103, 74–83. [Google Scholar] [CrossRef]
- Shi, Y.-Q.; Fu, T.; Xu, Y.-J.; Li, D.-F.; Wang, X.-L.; Wang, Y.-Z. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018, 354, 208–219. [Google Scholar] [CrossRef]
- Li, N.; Zong, L.; Wu, Z.; Liu, C.; Wang, X.; Bao, F.; Wang, J.; Jian, X. Amino-terminated nitrogen-rich layer to improve the interlaminar shear strength between carbon fiber and a thermoplastic matrix. Compos. Part A Appl. Sci. Manuf. 2017, 101, 490–499. [Google Scholar] [CrossRef]
- Peng, W.; Nie, S.-B.; Xu, Y.-X.; Yang, W. A tetra-DOPO derivative as highly efficient flame retardant for epoxy resins. Polym. Degrad. Stab. 2021, 193, 109715. [Google Scholar] [CrossRef]
- Zou, J.; Duan, H.; Chen, Y.; Ji, S.; Cao, J.; Ma, H. A P/N/S-containing high-efficiency flame retardant endowing epoxy resin with excellent flame retardance, mechanical properties and heat resistance. Compos. Part B Eng. 2020, 199, 108228. [Google Scholar] [CrossRef]
- Duan, H.; Chen, Y.; Ji, S.; Hu, R.; Ma, H. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties. Chem. Eng. J. 2019, 375, 121916. [Google Scholar] [CrossRef]
Samples | E-44 (wt%) | BCI (wt%) | BSEA (wt%) | P (wt%) | DDM (g) |
---|---|---|---|---|---|
Pure EP | 100 | 0 | 0 | 0 | 25 |
EP/BCI-25 | 75 | 25 | 0 | 0 | 31.25 |
EP/BCI/BSEA-2 | 73 | 25 | 2 | 0.18 | 30.75 |
EP/BCI/BSEA-3 | 72 | 25 | 3 | 0.27 | 30.50 |
EP/BCI/BSEA-4 | 71 | 25 | 4 | 0.35 | 30.25 |
EP/BCI/BSEA-5 | 70 | 25 | 5 | 0.44 | 30.00 |
Samples | Experimental Phenomena (Number of Times) | Total Number of Tests | IRS (%) | |||
---|---|---|---|---|---|---|
Burning | Explosion | Flash | Charring | |||
Pure EP | 0 | 1 | 2 | 0 | 20 | 10.5 |
EP/BCI-25 | 0 | 1 | 2 | 0 | 20 | 10.5 |
EP/BCI/BSEA-2 | 1 | 0 | 0 | 1 | 20 | 7.0 |
EP/BCI/BSEA-3 | 0 | 0 | 0 | 2 | 20 | 4.0 |
EP/BCI/BSEA-4 | 0 | 0 | 0 | 0 | 20 | 0 |
EP/BCI/BSEA-5 | 0 | 0 | 0 | 0 | 20 | 0 |
Sample | C1s | |||||
---|---|---|---|---|---|---|
COOR | C=O | C-O-C/C-OH/ C-N | C-C/C=C/ C-H | |||
Pure EP | Before | BE (eV) | — | 287.99 | 285.90 | 284.15 |
Area (%) | — | 1.22 | 13.86 | 84.92 | ||
After explosion | BE (eV) | 289.99 | 288.20 | 285.43 | 283.93 | |
Area (%) | 2.46 | 3.36 | 24.80 | 69.38 | ||
EP/BCI/BSEA-2 | Before | BE (eV) | — | 287.65 | 285.16 | 283.71 |
Area (%) | — | 2.84 | 21.37 | 75.79 | ||
After burning | BE (eV) | 290.40 | 287.70 | 285.45 | 284.02 | |
Area (%) | 1.50 | 4.67 | 14.52 | 79.31 | ||
EP/BCI/BSEA-5 | Before | BE (eV) | — | 287.70 | 285.10 | 283.76 |
Area (%) | — | 2.44 | 25.23 | 72.33 | ||
After no reaction | BE (eV) | — | 287.35 | 285.42 | 283.98 | |
Area (%) | — | 6.47 | 15.51 | 78.02 |
Sample | O1s | P2p | |||||
---|---|---|---|---|---|---|---|
C-O-C | C=O | PO3/P2O5 | P=O | P-O-C | |||
EP/BCI/BSEA-2 | Before | BE (eV) | 531.95 | 531.20 | — | — | — |
Area (%) | 41.56 | 58.44 | — | — | — | ||
After burning | BE (eV) | 532.25 | 531.50 | 134.60 | 133.00 | 132.00 | |
Area (%) | 33.83 | 66.17 | 24.76 | 57.34 | 17.90 | ||
EP/BCI/BSEA-5 | Before | BE (eV) | 531.80 | 531.25 | — | — | — |
Area (%) | 49.03 | 50.97 | — | — | — | ||
After no reaction | BE (eV) | 532.10 | 531.45 | 134.50 | 133.00 | 132.01 | |
Area (%) | 35.08 | 64.92 | 24.46 | 44.43 | 31.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Wang, H.; Wang, S.; Xu, B.; Qu, L. Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen. Polymers 2022, 14, 4343. https://doi.org/10.3390/polym14204343
Liu N, Wang H, Wang S, Xu B, Qu L. Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen. Polymers. 2022; 14(20):4343. https://doi.org/10.3390/polym14204343
Chicago/Turabian StyleLiu, Ni, Hui Wang, Shun Wang, Baosheng Xu, and Lijie Qu. 2022. "Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen" Polymers 14, no. 20: 4343. https://doi.org/10.3390/polym14204343
APA StyleLiu, N., Wang, H., Wang, S., Xu, B., & Qu, L. (2022). Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen. Polymers, 14(20), 4343. https://doi.org/10.3390/polym14204343