Preparation and Properties of Electrospun PLLA/PTMC Scaffolds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLLA/PTMC Fibres by Electrospinning
2.3. Surface Morphology Analysis of PLLA/PTMC Electrospun Fibers
2.4. Thermal Analysis of PLLA/PTMC Electrospun Fibres
2.5. Water Contact Angle Test of PLLA/PTMC Electrospun Fibres
2.6. Mechanical Property Test of PLLA/PTMC Electrospun Fibre Membrane Materials
2.7. Cytotoxicity Tests Conducted on PLLA/PTMC Electrospun Fibres
2.8. Biodegradation Analysis
3. Results and Discussion
3.1. Morphological Characteristics of PLLA/PTMC Electrospun Fibres
3.2. Thermodynamic Properties of PLLA/PTMC Electrospun Fibres
3.3. Mechanical Uniaxial Tensile Tests Conducted on PLLA/PTMC Electrospun Fibre Membrane Materials
3.4. Wettability Experiments Conducted on PLLA/PTMC Electrospun Fibre Membrane Materials
3.5. Cytotoxicity of PLLA/PTMC Electrospun Fibre Membrane Materials
3.6. Biodegradability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation functionalization and biomedical application. Prog. Polym. Sci. 2012, 37, 237–280. [Google Scholar] [CrossRef]
- Lasprilla, A.J.; Martinez, G.A.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Leng, X.; Wei, Z.; Ren, Y.; Bian, Y.; Wang, Q.; Li, Y. Copolymerization of l-lactide/trimethylene carbonate by organocatalysis: Controlled synthesis of comb-like graft copolymers with side chains with different topologies. RSC Adv. 2016, 6, 40371–40382. [Google Scholar] [CrossRef]
- Loiola, L.M.; Tornello, P.; Abraham, G.A.; Felisberti, M.I. Amphiphilic electrospun scaffolds of PLLA-PEO-PPO block copolymers: Preparation, characterization and drug-release behaviour. RSC Adv. 2017, 7, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl. Mater. Interfaces 2016, 8, 20274–20282. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef]
- Qu, L.; Zhang, W.; Zhao, G.; Zhao, D. Design of a ductile carbon nanofiber/ZrB2 nanohybrid film with entanglement structure fabricated by electrostatic spinning. Ceram. Int. 2021, 47, 15114–15120. [Google Scholar] [CrossRef]
- Chang, X.; Lambo, M.T.; Liu, D.; Li, X. The study of the potential application of nanofiber microcapsules loading lactobacillus in targeted delivery of digestive tract in vitro. LWT-Food Sci. Technol. 2021, 148, 111692. [Google Scholar] [CrossRef]
- Nie, K.; Han, S.; Yang, J.; Sun, Q.; Wang, X.; Li, X.; Li, Q. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers 2020, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mak, A.F.; Li, J.; Wang, M.; Shum, A.W. Formation of apatite on poly(α-hydroxy acid) in an accelerated biomimetic process. J. Biomed. Mater. Research. Part B Appl. Biomater. 2005, 73, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release Off. J. Control. Release Soc. 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Mostafavi, E.; Medina-Cruz, D.; Kalantari, K.; Taymoori, A.; Soltantabar, P.; Webster, T.J. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine. Bioelectricity 2020, 2, 120–149. [Google Scholar] [CrossRef] [PubMed]
- Shamaz, B.H.; Anitha, A.; Nair, M. Characterization of 3D bony scaffold of HA-gelatin with PLLA electrospun sheet. In Proceedings of the Bioquest 2013: International Conference on Biomedical Engineering, Innsbruck, Austria, 13 February 2013. [Google Scholar]
- Monticelli, O.; Bocchini, S.; Gardella, L.; Cavallo, D.; Cebe, P.; Germelli, G. Impact of synthetic talc on PLLA electrospun fibers. Eur. Polym. J. 2013, 49, 2572–2583. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.; Yang, W.; Liu, X.; Jiao, Y.; Zhou, C. Influence of layer-by-layer assembled electrospun poly (L-lactic acid) nanofiber mats on the bioactivity of endothelial cells. Appl. Surf. Sci. 2016, 390, 838–846. [Google Scholar] [CrossRef]
- Gaware, S.A.; Rokade, K.A.; Kale, S.N. Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. J. Drug Deliv. Sci. Technol. 2019, 53, 345–351. [Google Scholar] [CrossRef]
- Kouya, T.; Tada, S.I.; Minbu, H.; Nakajima, Y.; Horimizu, M.; Kawase, T.; Lloyd, D.R.; Tanaka, T. Microporous membranes of PLLA/PCL blends for periosteal tissue scaffold. Mater. Lett. 2013, 95, 103–106. [Google Scholar] [CrossRef]
- Qi, H.; Ye, Z.; Ren, H.; Chen, N.; Zeng, Q.; Wu, X.; Lu, T. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 2016, 148, 139–144. [Google Scholar] [CrossRef] [PubMed]
- López, C.; Medina, K.; Dambrosio, R.; Michell, R.M. PLLA and cassava thermoplastic starch blends: Crystalinity, mechanical properties, and UV degradation. J. Polym. Res. 2021, 28, 237–243. [Google Scholar] [CrossRef]
- Nazir, F.; Iqbal, M.; Khan, A.N.; Mazhar, M.; Hussain, Z. Fabrication of robust poly l-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: Study of physical properties, structure, and cytocompatibility for bone tissue engineering. J. Mater. Res. Technol. 2021, 13, 1732–1751. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Zhang, X.; Ren, Y.; Cui, X.; Song, X. Synthesis of PCL-branched P(MMA-co-HEMA) to toughen electrospun PLLA fiber membrane. Polym. Adv. Technol. 2018, 29, 442–450. [Google Scholar] [CrossRef]
- Song, Y.; Kamphuis, M.M.; Zhang, Z.; Sterk, L.M.T.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater. 2010, 6, 1269–1277. [Google Scholar] [CrossRef]
- Mizutani, M.; Arnold, S.C.; Matsuda, T. Liquid, phenylazide-end-capped copolymers of ε-caprolactone and trimethylene carbonate: Preparation, photocuring characteristics, and surface layering. Biomacromolecules 2002, 3, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, M.; Socka, M.; Makowski, T.; Kost, B.; Cieślak, M.; Królewska-Golińska, K. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids Surf. B Biointerfaces 2021, 201, 111598. [Google Scholar] [CrossRef]
- Guo, Z.; Grijpma, D.W.; Poot, A.A. Preparation and characterization of flexible and elastic porous tubular PTMC scaffolds for vascular tissue engineering. Polym. Adv. Technol. 2017, 28, 1239–1244. [Google Scholar] [CrossRef]
- Bat, E.; Kothman, B.H.M.; Higuera, G.A.; van Blitterswijk, C.; Feijen, J.; Grijpma, D.W. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials 2010, 31, 8696–8705. [Google Scholar] [CrossRef]
- Papenburg, B.J.; Schüller-Ravoo, S.; Bolhuis-Versteeg, L.A.M.; Hartsuiker, L.; Grijpma, D.W.; Feijen, J.; Wessling, M.; Stamatialis, D. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Acta Biomater. 2009, 5, 3281–3294. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.H.; Long, Y.Z.; Zhou, X.Y.; Jiang, Y.; Xie, X. Acid dissociation constants and cytotoxicity test of a series of omega-aminoalkyl phosphates. Chin. Chem. Lett. 2016, 27, 1523–1530. [Google Scholar] [CrossRef]
- Kim, S.; Basuli, U.; Lee, R.H.; Gent, A.N.; Nah, C. Preparation and morphological characteristics of fluoroelastomer electrospun fibers. Asian J. Chem. 2013, 25, 5195–5199. [Google Scholar] [CrossRef]
- Jiang, S.; Song, P.; Guo, H.; Zhang, X.; Ren, Y.; Liu, H.; Song, X.; Kong, M. Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. J. Mater. Sci. 2017, 52, 1617–1624. [Google Scholar] [CrossRef]
- Zhou, X.L.; Zhang, C.H.; Liu, B.J. Study of the crystallization behaviors of polylactic acid/poly trimethylene carbonate blend films. China Plast. Ind. 2016, 44, 107–110. [Google Scholar]
- Wong, D.; Andriyana, A.; Ang, B.C.; Verron, E. Surface morphology and mechanical response of randomly oriented electrospun nanofibrous membrane. Polym. Test. 2016, 53, 108–115. [Google Scholar] [CrossRef]
- Kumar, P.; Vasita, R. Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uniaxial tensile testing. J. Appl. Polym. Sci. 2017, 134, 231–240. [Google Scholar] [CrossRef]
- Lingna, H.; Dave, F.; Jian, C.; Lannutti, J.J.; Rokhlin, S.I. Wettability modification of electrospun poly(ε-caprolactone) fiber by femtosecond laser irradiation. J. Laser Appl. 2011, 25, 012002. [Google Scholar] [CrossRef]
- Phachamud, T.; Phiriyawirut, M. In vitro cytotoxicity and degradability tests of gallic acid-loaded cellulose acetate electrospun fiber. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 85–98. [Google Scholar]
- Nichol, J.W.; Koshy, S.T.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544. [Google Scholar] [CrossRef]
Scaffold Material | Modulus of Elasticity (MPa) | Tensile Stress (MPa) | Elongation at Break (%) |
---|---|---|---|
PLLA | 10.13 ± 2.30 | 0.49 ± 0.07 | 24.71 ± 0.76 |
PLLA/PTMC (9:1) | 26.37 ± 6.08 | 1.05 ± 0.26 | 72.69 ± 6.35 |
PLLA/PTMC (8:2) | 35.28 ± 5.01 | 1.59 ± 0.13 | 137.51 ± 5.01 |
PLLA/PTMC (7:3) | 65.17 ± 2.85 | 2.72 ± 0.24 | 202.55 ± 11.40 |
PLLA/PTMC (6:4) | 74.49 ± 8.22 | 5.08 ± 0.44 | 257.88 ± 14.76 |
PLLA/PTMC (5:5) | 31.31 ± 6.04 | 8.81 ± 1.40 | 344.85 ± 32.70 |
PTMC | 5.07 ± 1.26 | 9.96 ± 1.54 | 552.54 ± 41.98 |
Group | OD a | RGR b (%) | Toxicity Grade |
---|---|---|---|
Control | 1.36900 ± 0.00557 | 100 | - |
PLLA | 1.29767 ± 0.00907 | 94.78938 | 1 |
PLLA/PTMC (9:1) | 1.36133 ± 0.04460 | 99.43998 | 1 |
PLLA/PTMC (8:2) | 1.36100 ± 0.01039 | 99.41563 | 1 |
PLLA/PTMC (7:3) | 1.34600 ± 0.00693 | 98.31994 | 1 |
PLLA/PTMC (6:4) | 1.36300 ± 0.02193 | 99.56172 | 1 |
PLLA/PTMC (5:5) | 1.36667 ± 0.02050 | 99.82956 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Zou, H.; Zhang, H.; Zhao, W.; Lan, Y.; Yuan, M. Preparation and Properties of Electrospun PLLA/PTMC Scaffolds. Polymers 2022, 14, 4406. https://doi.org/10.3390/polym14204406
Jiang D, Zou H, Zhang H, Zhao W, Lan Y, Yuan M. Preparation and Properties of Electrospun PLLA/PTMC Scaffolds. Polymers. 2022; 14(20):4406. https://doi.org/10.3390/polym14204406
Chicago/Turabian StyleJiang, Dengbang, Haoying Zou, Heng Zhang, Wan Zhao, Yaozhong Lan, and Mingwei Yuan. 2022. "Preparation and Properties of Electrospun PLLA/PTMC Scaffolds" Polymers 14, no. 20: 4406. https://doi.org/10.3390/polym14204406
APA StyleJiang, D., Zou, H., Zhang, H., Zhao, W., Lan, Y., & Yuan, M. (2022). Preparation and Properties of Electrospun PLLA/PTMC Scaffolds. Polymers, 14(20), 4406. https://doi.org/10.3390/polym14204406