Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPS
2.3. Preparation of PBAT/TPS/MCC Composites
2.4. Tensile Tests
2.5. X-ray Diffraction (XRD)
2.6. Scanning Electron Microscopy (SEM)
2.7. Fourier Transform Infrared Spectroscopy (FT-IR)
2.8. Thermo-Gravimetric Analysis (TGA)
2.9. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Mechanical Properties Analysis
3.2. XRD Analysis
3.3. Micromorphological Analysis
3.4. FT-IR Analysis
3.5. Thermal Stability Analysis
3.6. DSC Analysis
3.7. Comparison of PABT/TPS Composites with/without the Chain Extender
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, J.; Pei, H.; Zhou, X.; Xie, X. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur. Polym. J. 2021, 143, 110198. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, K. PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 2017, 148, 59–69. [Google Scholar] [CrossRef]
- Xiong, S.J.; Bo, P.; Zhou, S.J.; Li, M.K.; Yang, S.; Wang, Y.Y.; Shi, Q.T.; Wang, S.F.; Yuan, T.Q.; Sun, R.C. Economically Competitive Biodegradable PBAT/Lignin Composites: Effect of Lignin Methylation and Compatibilizer. ACS Sustain. Chem. Eng. 2020, 8, 5338–5346. [Google Scholar] [CrossRef]
- Fukushima, K.; Wu, M.H.; Bocchini, S.; Rasyida, A.; Yang, M.C. PBAT based nanocomposites for medical and industrial applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1331–1351. [Google Scholar] [CrossRef]
- Titone, V.; La Mantia, F.P.; Mistretta, M.C. The Effect of Calcium Carbonate on the Photo-Oxidative Behavior of Poly(butylene adipate-co-terephthalate). Macromol. Mater. Eng. 2020, 305, 2000358. [Google Scholar] [CrossRef]
- Mekonnen, T.; Misra, M.; Mohanty, A.K. Fermented Soymeals and Their Reactive Blends with Poly(butylene adipate-co-terephthalate) in Engineering Biodegradable Cast Films for Sustainable Packaging. ACS Sustain. Chem. Eng. 2016, 4, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V.; Chaudhry, A.U.; Matsko, N.B. “True” Biocomposites with Biopolyesters and Date Seed Powder: Mechanical, Thermal, and Degradation Properties. J. Appl. Polym. Sci. 2014, 131, 40816. [Google Scholar] [CrossRef]
- Sheng, K.; Zhang, S.; Qian, S.; Fontanillo Lopez, C.A. High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char. Compos. Part B Eng. 2019, 165, 174–182. [Google Scholar] [CrossRef]
- Moscicki, L.; Mitrus, M.; Wojtowicz, A.; Oniszczuk, T.; Rejak, A.; Janssen, L. Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res. Int. 2012, 47, 291–299. [Google Scholar] [CrossRef]
- Wei, D.; Wang, H.; Xiao, H.; Zheng, A.; Yang, Y. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr. Polym. 2015, 123, 275–282. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, Z.Z.; Lin, X.R.; Ren, Z.Y.; Li, B.; Zhang, Y.Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym. 2018, 184, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Cao, Z.; Qian, S.; Xia, Y.; Zhang, J.; Kong, Y.; Sheng, K.; Zhang, Y.; Wan, Y.; Takahashi, J. Improving tensile strength and impact toughness of plasticized poly(lactic acid) biocomposites by incorporating nanofibrillated cellulose. Nanotechnol. Rev. 2022, 11, 2469–2482. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, J.; Qian, S.; Zhu, X.; Takahashi, J. Green-plasticized poly(lactic acid)/nanofibrillated cellulose biocomposites with high strength, good toughness and excellent heat resistance. Compos. Sci. Technol. 2021, 203, 108613. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, H.; Yao, W.; Sheng, K. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos. Part B Eng. 2018, 133, 203–209. [Google Scholar] [CrossRef]
- Botta, L.; Titone, V.; Mistretta, M.C.; La Mantia, F.P.; Modica, A.; Bruno, M.; Sottile, F.; Lopresti, F. PBAT Based Composites Reinforced with Microcrystalline Cellulose Obtained from Softwood Almond Shells. Polymers 2021, 13, 2643. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Long, Z.; Wang, S.F.; Zhang, J.X.; Wang, L. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int. J. Biol. Macromol. 2020, 165, 2295–2302. [Google Scholar] [CrossRef]
- Reis, M.O.; Zanela, J.; Olivato, J.; Garcia, P.S.; Yamashita, F.; Grossmann, M.V.E. Microcrystalline Cellulose as Reinforcement in Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Films. J. Polym. Environ. 2014, 22, 545–552. [Google Scholar] [CrossRef]
- Fourati, Y.; Tarres, Q.; Mutje, P.; Boufi, S. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr. Polym. 2018, 199, 51–57. [Google Scholar] [CrossRef]
- Nordqvist, D.; Sanchez-Garcia, M.D.; Hedenqvist, M.S.; Lagaron, J.M. Incorporating Amylopectin in Poly(lactic Acid) by Melt Blending Using Poly(ethylene-co-vinyl Alcohol) as a Thermoplastic Carrier. (I) Morphological Characterization. J. Appl. Polym. Sci. 2010, 115, 1315–1324. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Lin, Z.; Li, J.; Jiang, G. Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polym. Test. 2019, 76, 385–395. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.Y.; Yang, J.; Pan, H.W.; Gao, G.H.; Zhang, H.L.; Dong, L.S. Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender. Polym. Eng. Sci. 2018, 58, 1868–1878. [Google Scholar] [CrossRef]
- Niazi, M.B.K.; Zijlstra, M.; Broekhuis, A.A. Understanding the role of plasticisers in spray-dried starch. Carbohydr. Polym. 2013, 97, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, P.; Shan, G.; Bao, Y. Polylactide-b-poly(ethylene-co-butylene)-b-polylactide thermoplastic elastomers: Role of polylactide crystallization and stereocomplexation on microphase separation, mechanical and shape memory properties. RSC Adv. 2014, 4, 47965–47976. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Laurindo, J.B.; Yamashita, F. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind. Crop. Prod. 2011, 33, 605–610. [Google Scholar] [CrossRef]
- Chivrac, F.; Kadlecova, Z.; Pollet, E.; Averous, L. Aromatic copolyester-based nano-biocomposites: Elaboration, structural characterization and properties. J. Polym. Environ. 2006, 14, 393–401. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, S.; Rials, T.G. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. Part A Appl. Sci. Manuf. 2009, 40, 218–224. [Google Scholar] [CrossRef]
- Haafiz, M.K.M.; Hassan, A.; Zakaria, Z.; Inuwa, I.M.; Islam, M.S.; Jawaid, M. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 2013, 98, 139–145. [Google Scholar] [CrossRef]
- Garalde, R.A.; Thipmanee, R.; Jariyasakoolroj, P.; Sane, A. The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon 2019, 5, e01251. [Google Scholar] [CrossRef] [Green Version]
- de Souza, A.G.; Nunes, E.D.D.; Rosa, D.D. Understanding the effect of chain extender on poly(butylene adipate-co-terephthalate) structure. Iran. Polym. J. 2019, 28, 1035–1044. [Google Scholar] [CrossRef]
- Nunes, F.C.; Ribeiro, K.C.; Martini, F.A.; Barrioni, B.R.; Ferreira Santos, J.P.; Carvalho, B.M. PBAT/PLA/cellulose nanocrystals biocomposites compatibilized with polyethylene grafted maleic anhydride (PE-g-MA). J. Appl. Polym. Sci. 2021, 138, 51342. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Sain, M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci. 2005, 97, 2014–2025. [Google Scholar] [CrossRef]
- Giri, J.; Lach, R.; Le, H.H.; Grellmann, W.; Saiter, J.M.; Henning, S.; Radusch, H.J.; Adhikari, R. Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose. Polym. Bull. 2021, 78, 4779–4795. [Google Scholar] [CrossRef]
- Ning, W.; Jiugao, Y.; Xiaofei, M.; Ying, W. The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr. Polym. 2007, 67, 446–453. [Google Scholar] [CrossRef]
- Cao, X.D.; Habibi, Y.; Lucia, L.A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 2009, 19, 7137–7145. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Wang, Z.; Dai, B.; Liu, J.; Chen, Y.; Zeng, G.; He, Y.; Liu, Y.; Liu, R. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion. Carbohydr. Polym. 2019, 223, 115122. [Google Scholar] [CrossRef]
- Akrami, M.; Ghasemi, I.; Azizi, H.; Karrabi, M.; Seyedabadi, M. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr. Polym. 2016, 144, 254–262. [Google Scholar] [CrossRef]
- Koschek, K. Design of natural fiber composites utilizing interfacial crystallinity and affinity. Compos. Part A Appl. Sci. Manuf. 2015, 69, 21–29. [Google Scholar] [CrossRef]
Sample Name | PBAT wt% | TPS wt% | MCC wt% | ADR wt% |
---|---|---|---|---|
0% MCC | 40 | 60 | 0 | 0.5 |
2% MCC | 40 | 58 | 2 | 0.5 |
2% MCC-N | 40 | 58 | 2 | 0 |
4% MCC | 40 | 56 | 4 | 0.5 |
6% MCC | 40 | 54 | 6 | 0.5 |
8% MCC | 40 | 52 | 8 | 0.5 |
Samples | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) |
---|---|---|---|
0% MCC | 4.03 ± 0.13 a | 10.38 ± 0.3 a | 556 ± 20 a |
2% MCC | 4.52 ± 0.22 b | 10.18 ± 0.3 a | 543 ± 23 b |
2% MCC-N | 4.58 ± 0.21 b | 15.04 ± 0.4 b | 303 ± 10 c |
4% MCC | 5.08 ± 0.36 c | 20.58 ± 0.7 c | 230 ± 46 d |
6% MCC | 5.78 ± 0.12 d | 30.78 ± 0.6 d | 87 ± 45 e |
8% MCC | 5.64 ± 0.24 d | 34.99 ± 1.5 d | 78 ± 2 e |
Samples | Peak | Tonset (°C) | Temperature Range (°C) | Tmax (°C) | Mass Loss at 550 °C (%) |
---|---|---|---|---|---|
0% MCC | 1 | 283.9 | 283.9–304.7 | 295.3 | 94.8 |
2 | 372.3 | 372.3–407.8 | 391.9 | ||
2% MCC | 1 | 282.6 | 282.6–307.0 | 297.0 | 97.5 |
2 | 373.3 | 373.3–405.5 | 393.9 | ||
2% MCC-N | 1 | 280.5 | 280.5–318.9 | 302.4 | 99.9 |
2 | 374.2 | 374.2–408.5 | 393.6 | ||
4% MCC | 1 | 284.3 | 284.3–308.0 | 303.0 | 91.2 |
2 | 374.4 | 374.4–410.0 | 393.9 | ||
6% MCC | 1 | 283.8 | 283.8–308.8 | 298.1 | 94.8 |
2 | 372.9 | 372.9–406.8 | 394.0 | ||
8% MCC | 1 | 285.4 | 285.4–306.7 | 294.9 | 93.8 |
2 | 376.4 | 376.4–408.2 | 394.4 |
Samples | Tc (°C) | ΔHc (J/g) | Xc (%) | CI (%) | Tm (°C) | ΔHm (J/g) |
---|---|---|---|---|---|---|
0% MCC | 90.3 | 4.456 | 9.77 | 9.68 | 123.0 | 2.571 |
2% MCC | 86.5 | 5.133 | 11.26 | 11.28 | 120.2 | 3.193 |
4% MCC | 87.2 | 5.373 | 11.78 | 11.82 | 123.2 | 2.738 |
6% MCC | 88.6 | 5.183 | 11.37 | 11.41 | 125.7 | 3.336 |
8% MCC | 88.5 | 5.354 | 11.74 | 11.80 | 120.6 | 3.089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, H.; Chen, X.; Tian, J.; Chen, J.; Zhou, M.; Lu, F.; Qian, S. Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender. Polymers 2022, 14, 4517. https://doi.org/10.3390/polym14214517
Lang H, Chen X, Tian J, Chen J, Zhou M, Lu F, Qian S. Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender. Polymers. 2022; 14(21):4517. https://doi.org/10.3390/polym14214517
Chicago/Turabian StyleLang, Haitao, Xianlei Chen, Jiarong Tian, Jing Chen, Mengna Zhou, Fangfang Lu, and Shaoping Qian. 2022. "Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender" Polymers 14, no. 21: 4517. https://doi.org/10.3390/polym14214517
APA StyleLang, H., Chen, X., Tian, J., Chen, J., Zhou, M., Lu, F., & Qian, S. (2022). Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender. Polymers, 14(21), 4517. https://doi.org/10.3390/polym14214517