Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance
Abstract
:1. Introduction
2. Accuracy of CAD/CAM Fabrication for PEEK Materials
3. Characteristics of PEEK and Its Composite Materials
3.1. Surface Roughness and Polishing Protocols
3.2. Bacterial Plaque Retention
3.3. Color Stability
3.4. Wear
3.5. Retention Force and Fatigue Resistance of Removable Dental Prosthesis Clasps
4. Clinical Performance for Removable PEEK Prosthodontics
4.1. Removable Partial Dentures
4.2. Double Crown-Retained RPDs
4.3. Overdentures
4.4. Obturator Prosthesis
Author, Year | Type of the Study | Participants | Intervention | Follow-up | Results | Conclusions |
---|---|---|---|---|---|---|
Sharaf et al. [85] | Random control study | N = 18 Females: 6 Males: 12 | PEEK/metal attachment-retained obturators and conventional clasp-retained obturators | 1 week and 3, 6, 9, and 12 months | Obturator functional scale scores: PEEK and metal group scores decreased for looks, talking, and prosthesis insertion Bone loss: PEEK and metal groups showed lower values than conventional clasp-retained obturators | Regarding esthetics and appearance satisfaction, PEEK can be used in obturators |
Ding et al. [24] | Technique | Not reported | Maxillary obturator with a 3D-printed PEEK | Not reported | Precise fit, excellent retention, and reduced weight of PEEK framework compared to metal framework | |
Guo et al. [97] | Technique | Not reported | Maxillary obturator with a milled PEEK | Not reported | A fully digital workflow for the design and manufacture of PEEK obturator was shown | |
Tasopoulos et al. [99] | Case report | Females: 47 | Two-piece hollow bulb maxillary obturator prosthesis | 1 year | The resilience and long-term functionality of the PEEK clasps and the biological and structural stability of the two-piece obturator parts have yet to be determined | |
Costa-Palau et al. [96] | Case report | Females: 58 | Maxillary obturator with a milled PEEK | 6 months | The strength and appearance of the PEEK and acrylic resin were satisfactory |
5. Conclusions
- The accuracy of the conventional lost-wax technique and subtractive techniques is adequate for the manufacture of removable prostheses. However, to fabricate removable prostheses with complex designs, addictive manufacturing must be explored, and the accuracy of such manufacturing methods must be investigated;
- The surface roughness of PEEK is clinically accepted, and the use of pastes represents an effective method for PEEK polishing. However, as compared to laboratory polishing protocols, more convenient chairside polishing protocols for PEEK should be investigated;
- PEEK with lower surface-free energy provides hydrophobic surfaces and is more likely to facilitate the growth of hydrophobic microorganisms, such as Candida albicans. In terms of high heterogeneity, laboratory studies need to be more standardized. Only one report revealed the plaque accumulation of PEEK and the methodological quality of the studies that need to be addressed in future clinical studies;
- PEEK is available in a wide range of shades, from pearl white to pink shades. On the basis of the lower solubility and water absorption values, PEEK may have higher color stability compared to PMMA and composite resin. It should be noted that some orange and brown pigments show a high affinity for the polymer phase and should be avoided while using PEEK restoration. However, only one clinical study reported fewer colors and textures in PEEK clasps. Long-term and large-scale clinical trials should be investigated;
- As a result of plastic deformation, PEEK appears to be more wear-resistant. The three-body abrasion evidence is limited, especially in studies that compare PEEK with other materials;
- The retention of PEEK clasps is clinically accepted based on existing evidence. As compared to metal clasps, a deeper undercut (0.5 mm) and increased bulkiness can provide additional retention for PEEK clasps. Future research should focus on its clinical survival rates considering the complexity of the oral environment, as it represents a promising new platform for investigation;
- After summarizing various clinical reports, techniques, and short-term clinical trials, we have concluded that PEEKs clinical performance in removable dental prostheses is satisfactory and promising. However, large-scale and long-term clinical controlled trials should be conducted.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khurshid, Z.; Nedumgottil, B.M.; Ali, R.M.M.; Bencharit, S.; Najeeb, S. Insufficient Evidence to Ascertain the Long-Term Survival of PEEK Dental Prostheses: A Systematic Review of Clinical Studies. Polymers 2022, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Muhammad, N.; Khan, A.S.; Sharif, F.; Rahim, A.; Ahmad, P.; Irfan, M. Prosthodontics Dental Materials: From Conventional to Unconventional. Mater. Sci. Eng. C 2020, 106, 1101671. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Jovanović, M.; Živić, M.; Milosavljević, M. A Potential Application of Materials Based on a Polymer and CAD/CAM Composite Resins in Prosthetic Dentistry. J. Prosthodont. Res. 2021, 65, 137–147. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Punia, U.; Kaushik, A.; Garg, R.K.; Chhabra, D.; Sharma, A. 3D Printable Biomaterials for Dental Restoration: A Systematic Review. Mater. Today Proc. 2022, 63, 566–572. [Google Scholar] [CrossRef]
- Carneiro Pereira, A.L.; Bezerra de Medeiros, A.K.; de Sousa Santos, K.; Oliveira de Almeida, É.; Seabra Barbosa, G.A.; da Fonte Porto Carreiro, A. Accuracy of CAD-CAM Systems for Removable Partial Denture Framework Fabrication: A Systematic Review. J. Prosthet. Dent. 2021, 125, 241–248. [Google Scholar] [CrossRef]
- Batak, B.; Çakmak, G.; Johnston, W.M.; Yilmaz, B. Surface Roughness of High-performance Polymers Used for Fixed Implant-supported Prostheses. J. Prosthet. Dent. 2021, 126, 254.e1–254.e6. [Google Scholar] [CrossRef]
- Brum, R.S.; Labes, L.G.; Volpato, C.Â.M.; Benfatti, C.A.M.; Pimenta, A.L. Strategies to Reduce Biofilm Formation in PEEK Materials Applied to Implant Dentistry-A Comprehensive Review. Antibiotics 2020, 9, 609. [Google Scholar] [CrossRef]
- Porojan, L.; Toma, F.R.; Vasiliu, R.D.; Topală, F.-I.; Porojan, S.D.; Matichescu, A. Optical Properties and Color Stability of Dental PEEK Related to Artificial Ageing and Staining. Polymers 2021, 13, 4102. [Google Scholar] [CrossRef]
- Negm, E.E.; Aboutaleb, F.A.; Alam-Eldein, A.M. Virtual Evaluation of the Accuracy of Fit and Trueness in Maxillary Poly(etheretherketone) Removable Partial Denture Frameworks Fabricated by Direct and Indirect CAD/CAM Techniques. J. Prosthodont. 2019, 28, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, S.; Liu, N.; Hu, M.; Shi, C.; Li, D.; Liu, C. Evaluation of the mechanical properties and fit of 3D-printed polyetheretherketone removable partial dentures. Dent. Mater. J. 2022, in press. [CrossRef] [PubMed]
- Tasaka, A.; Shimizu, T.; Kato, Y.; Okano, H.; Ida, Y.; Higuchi, S.; Yamashita, S. Accuracy of removable partial denture framework fabricated by casting with a 3D printed pattern and selective laser sintering. J. Prosthodont. Res. 2020, 64, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.; Hey, J.; Schweyen, R.; Setz, J.M. Accuracy of CAD-CAM-fabricated removable partial dentures. J. Prosthet. Dent. 2018, 119, 586–592. [Google Scholar] [CrossRef]
- Ye, H.; Li, X.; Wang, G.; Kang, J.; Liu, Y.; Sun, Y.; Zhou, Y. A Novel Computer-Aided Design/Computer-Assisted Manufacture Method for One-Piece Removable Partial Denture and Evaluation of Fit. Int. J. Prosthodont. 2018, 31, 149–151. [Google Scholar] [CrossRef]
- Stern, M.A.; Brudvik, J.S.; Frank, R.P. Clinical evaluation of removable partial denture rest seat adaptation. J. Prosthet. Dent. 1985, 53, 658–662. [Google Scholar] [CrossRef]
- Lo Russo, L.; Lo Muzio, E.; Troiano, G.; Guida, L. Cast-free Fabrication of a Digital Removable Partial Denture with a Polyetheretherketone Framework. J. Prosthet. Dent. 2021, in press. [CrossRef]
- Harb, I.E.; Abdel-Khalek, E.A.; Hegazy, S.A. CAD/CAM Constructed Poly(etheretherketone) (PEEK) Framework of Kennedy Class I Removable Partial Denture: A Clinical Report: CAD/CAM PEEK RPD Framework. J. Prosthodont. 2019, 28, e595–e598. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Zhao, Y.; Liu, H. Computer-aided Design of Polyetheretherketone for Application to Removable Pediatric space Maintainers. BMC Oral Health 2020, 20, 201. [Google Scholar] [CrossRef]
- Lalama, M.; Rocha, M.G.; O’Neill, E.; Zoidis, P. Polyetheretherketone (PEEK) Post and Core Restorations: A 3D Accuracy Analysis between Heat-Pressed and CAD-CAM Fabrication Methods. J. Prosthodont. 2022, 31, 537–542. [Google Scholar] [CrossRef]
- Dua, R.; Rashad, Z.; Spears, J.; Dunn, G.; Maxwell, M. Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers 2021, 13, 4046. [Google Scholar] [CrossRef] [PubMed]
- Prechtel, A.; Reymus, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Comparison of Various 3D Printed and Milled PAEK Materials: Effect of Printing Direction and Artificial Aging on Martens Parameters. Dent. Mater. 2020, 36, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M. Polyether ether ketone (PEEK) and its Manufacturing of Customised 3D Printed Dentistry Parts Using Additive Manufacturing. Clin. Epidemiol. Glob. Health 2019, 7, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Chen, X.; Zhang, J.; Wang, R.; Wu, G. Digital Fabrication of a Maxillary Obturator Prosthesis by Using a 3-dimensionally-printed Polyetheretherketone Framework. J. Prosthet. Dent. 2021, in press. [CrossRef]
- Vulović, S.; Todorović, A.; Stančić, I.; Popovac, A.; Stašić, J.N.; Vencl, A.; Milić-Lemić, A. Study on the surface properties of different commercially available CAD/CAM materials for implant-supported restorations. J. Esthet Restor Dent. 2022, 34, 1132–1141. [Google Scholar] [CrossRef]
- Yap, A.U.J.; Mok, B.Y.Y. Surface Finish of a New Hybrid Aesthetic Restorative Material. Oper Dent. 2002, 27, 161–166. [Google Scholar]
- Sturz, C.R.C.; Faber, F.-J.; Scheer, M.; Rothamel, D.; Neugebauer, J. Effects of Various Chair-side Surface Treatment Methods on Dental Restorative Materials with Respect to Contact Angles and Surface Roughness. Dent. Mater. J. 2015, 34, 796–813. [Google Scholar] [CrossRef] [Green Version]
- D’Ercole, S.; Cellini, L.; Pilato, S.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; Petrini, M. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J. Mater. Sci. Mater. Med. 2020, 31, 84. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.; Youssef, H.; Gepreel, M.A.H.; Abbas, R.; Kandil, S. Surface Morphology and Mechanical Properties of Polyether Ether Ketone (PEEK) Nanocomposites Reinforced by Nano-Sized Silica (SiO2) for Prosthodontics and Restorative Dentistry. Polymers 2021, 13, 3006. [Google Scholar] [CrossRef]
- Benli, M.; Eker Gümüş, B.; Kahraman, Y.; Gökçen-Rohlig, B.; Evlioğlu, G.; Huck, O.; Özcan, M. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology 2020, 108, 240–250. [Google Scholar] [CrossRef]
- Gömleksiz, S.; Gömleksiz, O. The Effect of Contemporary Finishing and Polishing Systems on the Surface Roughness of Bulk Fill Resin Composite and Nanocomposites. J. Esthet Restor Dent. 2022, 34, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Grymak, A.; Aarts, J.M.; Ma, S.; Waddell, J.N.; Choi, J.J.E. Wear Behavior of Occlusal Splint Materials Manufactured by Various Methods: A Systematic Review. J. Prosthodont. 2022, 31, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, K.; Matsuda, T.; Ishida, Y.; Ichikawa, T. Effect of Polishing Protocols on the Surface Roughness of Polyetheretherketone. J. Oral Sci. 2020, 62, 40–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimer, S.; Schmidlin, P.R.; Roos, M.; Stawarczyk, B. Surface Properties of Polyetheretherketone after Different Laboratory and Chairside Polishing Protocols. J. Prosthet. Dent. 2017, 117, 419–425. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, L.G.D.O.; Ribeiro, V.S.T.; de Andrade, A.P.; Gonçalves, G.A.; Kraft, L.; Cieslinski, J.; Suss, P.H.; Tuon, F.F. Evaluation of Staphylococcus Aureus and Candida Albicans Biofilms Adherence to PEEK and Titanium-alloy Prosthetic Spine Devices. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 981–989. [Google Scholar] [CrossRef]
- Barkarmo, S.; Longhorn, D.; Leer, K.; Johansson, C.B.; Stenport, V.; Franco-Tabares, S.; Kuehne, S.A.; Sammons, R. Biofilm Formation on Polyetheretherketone and Titanium Surfaces. Clin. Exp. Dent. Res. 2019, 5, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Hahnel, S.; Wieser, A.; Lang, R.; Rosentritt, M. Biofilm Formation on the Surface of Modern Implant Abutment Materials. Clin. Oral Implant. Res. 2015, 26, 1297–1301. [Google Scholar] [CrossRef]
- Gama, L.T.; Bezerra, A.P.; Schimmel, M.; Rodrigues Garcia, R.C.M.; de Luca Canto, G.; Gonçalves, T.M.S.V. Clinical Performance of Polymer Frameworks in Dental Prostheses: A Systematic Review. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef]
- Peng, T.Y.; Lin, D.J.; Mine, Y.; Tasi, C.-Y.; Li, P.-J.; Shih, Y.-H.; Chiu, K.-C.; Wang, T.-H.; Hsia, S.-M.; Shieh, T.-M. Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis. Polymers 2021, 13, 940. [Google Scholar] [CrossRef]
- Hirasawa, M.; Tsutsumi-Arai, C.; Takakusaki, K.; Oya, T.; Fueki, K.; Wakabayashi, N. Superhydrophilic Co-polymer Coatings on Denture Surfaces Reduce Candida Albicans Adhesion—An In Vitro Study. Arch. Oral Biol. 2018, 87, 143–150. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kurahashi, K.; Liu, L.; Matsuda, T.; Ishida, Y. Use of a Polyetheretherketone Clasp Retainer for Removable Partial Denture: A Case Report. Dent. J. 2019, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Cevik, P.; Schimmel, M.; Yilmaz, B. New generation CAD-CAM materials for implant-supported definitive frameworks fabricated by using subtractive technologies. BioMed Res. Int. 2022, 2022, 3074182. [Google Scholar] [CrossRef] [PubMed]
- Mayinger, F.; Micovic, D.; Schleich, A.; Roos, M.; Eichberger, M.; Stawarczyk, B. Retention force of polyetheretherketone and cobalt-chrome-molybdenum removable dental prosthesis clasps after artificial aging. Clin. Oral Invest. 2021, 25, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Hahnel, S.; Günther, E.; Bidmon, W.; Schierz, O. Tooth-Colored CAD/CAM Materials for Application in 3-Unit Fixed Dental Prostheses in the Molar Area: An Illustrated Clinical Comparison. Materials 2020, 13, 5588. [Google Scholar] [CrossRef]
- Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review. J. Adhes. Dent. 2022, 24, 233–245.
- Gama, L.T.; Duque, T.M.; Özcan, M.; Philippi, A.G.; Mezzomo, L.A.M.; Gonçalves, T.M.S.V. Adhesion to High-Performance Polymers Applied in Dentistry: A Systematic Review. Dent. Mater. 2020, 36, e93–e108. [Google Scholar] [CrossRef]
- Ding, L.; Lu, W.; Zhang, J.; Yang, C.; Wu, G. Preparation and Performance Evaluation of Duotone 3D-Printed Polyetheretherketone as Oral Prosthetic Materials: A Proof-of-Concept Study. Polymers 2021, 13, 1949. [Google Scholar] [CrossRef]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color Stability of Resin-based Composites: Staining Procedures with Liquids—A Narrative Review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef]
- Zoidis, P.; Polychronakis, N.; Lagouvardos, P.; Polyzois, G.; Ngo, H.C. Evaluation of a Realistic Cleansing Protocol for Preventing Discoloration of Denture Resins: Protocol for Preventing Discoloration of Denture Resins. J. Prosthodont. 2019, 28, e89–e95. [Google Scholar] [CrossRef] [Green Version]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical Characterization of Polyetheretherketone and Current Esthetic Dental CAD/CAM Polymers after Aging in Different Storage Media. J. Prosthet. Dent. 2016, 115, 321–328.e2. [Google Scholar] [CrossRef] [Green Version]
- Alsadon, O.; Wood, D.; Patrick, D.; Pollington, S. Comparing the Optical and Mechanical Properties of PEKK Polymer when CAD/CAM Milled and Pressed Using a Ceramic Pressing Furnace. J. Mech. Behav. Biomed. Mater. 2019, 89, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Heimer, S.; Schmidlin, P.R.; Stawarczyk, B. Discoloration of PMMA, Composite, and PEEK. Clin. Oral Invest. 2017, 21, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Gupta, T. Evaluation of the Effect of Various Beverages and Food Material on the Color Stability of Provisional Materials—An In Vitro Study. J. Conserv. Dent. 2011, 14, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, L.H. Wear in Dentistry—Current Terminology. J. Dent. 1992, 20, 140–144. [Google Scholar] [CrossRef]
- Kewekordes, T.; Wille, S.; Kern, M. Wear of Polyetherketoneketones—Influence of Titanium Dioxide Content and Antagonistic Material. Dent. Mater. 2018, 34, 560–567. [Google Scholar] [CrossRef]
- Sampaio, M.; Buciumeanu, M.; Henriques, B.; Silva, F.S.; Souza, J.C.M.; Gomes, J.R. Comparison between PEEK and Ti6Al4V Concerning Micro-scale Abrasion Wear on Dental Applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 212–219. [Google Scholar] [CrossRef]
- Abhay, S.S.; Ganapathy, D.; Veeraiyan, D.N.; Ariga, P.; Heboyan, A.; Amornvit, P.; Rokaya, D.; Srimaneepong, V. Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers 2021, 13, 3761. [Google Scholar] [CrossRef]
- Wimmer, T.; Huffmann, A.M.S.; Eichberger, M.; Schmidlin, P.R.; Stawarczyk, B. Two-body Wear Rate of PEEK, CAD/CAM Resin Composite and PMMA: Effect of Specimen Geometries, Antagonist Materials and Test Set-up Configuration. Dent. Mater. 2016, 32, e127–e136. [Google Scholar] [CrossRef] [Green Version]
- Osiewicz, M.A.; Werner, A.; Roeters, F.J.M.; Kleverlaan, C.J. Effects of Occlusal Splint Therapy on Opposing Tooth Tissues, Filling Materials and Restorations. J Oral Rehabil. 2021, 48, 1129–1134. [Google Scholar] [CrossRef]
- Hardy, R.S.; Bonsor, S.J. The Efficacy of Occlusal Splints in the Treatment of Bruxism: A Systematic Review. J. Dent. 2021, 108, 103621. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Ye, H.; Zhao, W.; Liu, Y.; Zhou, Y. Preliminary Clinical Evaluation of Traditional and a New Digital PEEK Occlusal Splints for the Management of Sleep Bruxism. J. Oral Rehabil. 2020, 47, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Pordeus, M.D.; Santiago Junior, J.F.; Venante, H.S.; Bringel da Costa, R.M.; Chappuis Chocano, A.P.; Porto, V.C. Computer-aided Technology for Fabricating Removable Partial Denture Frameworks: A Systematic Review and Meta-Analysis. J. Prosthet. Dent. 2021, 128, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Aarts, J.M.; Ma, S.; Waddell, J.N.; Choi, J.J.E. Different Undercut Depths Influence on Fatigue Behavior and Retentive Force of Removable Partial Denture Clasp Materials: A Systematic Review. J. Prosthodont. 2022, in press. [CrossRef] [PubMed]
- Peng, T.-Y.; Ogawa, Y.; Akebono, H.; Iwaguro, S.; Sugeta, A.; Shimoe, S. Finite-element Analysis and Optimization of the Mechanical Properties of Polyetheretherketone (PEEK) Clasps for Removable Partial Dentures. J. Prosthodont. Res. 2020, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.D.O.; Borges, A.L.S.; Araújo, R.M.; da Silva, J.M.F.; Bottino, M.A.; Kleverlaan, C.J.; de Jager, N. Effect of Different Materials and Undercut on the Removal Force and Stress Distribution in Circumferential Clasps during Direct Retainer Action in Removable Partial Dentures. Dent. Mater. 2020, 36, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Tannous, F.; Steiner, M.; Shahin, R.; Kern, M. Retentive Forces and Fatigue Resistance of Thermoplastic Resin Clasps. Dent. Mater. 2012, 28, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Micovic, D.; Mayinger, F.; Bauer, S.; Roos, M.; Eichberger, M.; Stawarczyk, B. Is the High-performance Thermoplastic Polyetheretherketone Indicated as a Clasp Material for Removable Dental Prostheses? Clin. Oral Invest. 2021, 25, 2859–2866. [Google Scholar] [CrossRef]
- Alageel, O.; Alsheghri, A.A.; Algezani, S.; Caron, E.; Tamimi, F. Determining the Retention of Removable Partial Dentures. J. Prosthet. Dent. 2019, 122, 55–62.e3. [Google Scholar] [CrossRef]
- Frank, R.P.; Nicholls, J.I. A Study of the Flexibility of Wrought Wire Clasps. J. Prosthet. Dent. 1981, 45, 259–267. [Google Scholar] [CrossRef]
- Gentz, F.I.; Brooks, D.I.; Liacouras, P.C.; Petrich, A.; Hamlin, C.M.; Ellert, D.O.; Ye, L. Retentive Forces of Removable Partial Denture Clasp Assemblies Made from Polyaryletherketone and Cobalt-Chromium: A Comparative Study. J. Prosthodont. 2022, 31, 299–304. [Google Scholar] [CrossRef]
- Zoidis, P.; Papathanasiou, I.; Polyzois, G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J. Prosthodont. 2016, 25, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Marie, A.; Keeling, A.; Hyde, T.P.; Nattress, B.R.; Pavitt, S.; Murphy, R.J.; Shary, T.J.; Dillon, S.; Osnes, C.; Wood, D.J. Deformation and Retentive Force Following In Vitro Cyclic Fatigue of Cobalt-chrome and Aryl Ketone Polymer (AKP) Clasps. Dent. Mater. 2019, 35, e113–e121. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.O. Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue. Polymers 2022, 14, 2987. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Aarts, J.M.; Ma, S.; Waddell, J.N.; Choi, J.J.E. Fatigue Behavior of Removable Partial Denture Cast and Laser-sintered Cobalt-Chromium (CoCr) and Polyetheretherketone (PEEK) Clasp Materials. Clin. Exp. Dent. Res. 2022, in press. [CrossRef]
- Güleryüz, A.; Korkmaz, C.; Şener, A.; Taş, M.O. The Effect of Thermo-Mechanical Fatigue on the Retentive Force and Dimensional Changes in Polyetheretherketone Clasps with Different Thickness and Undercut. J. Adv. Prosthodont. 2021, 13, 304. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, M.; Zhang, H.; Wu, W.; Zheng, M.; Li, X. Cyclic Fatigue Properties of Cobalt-Chromium Alloy Clasps for Partial Removable Dental Prostheses. J. Prosthet. Dent 2010, 104, 389–396. [Google Scholar] [CrossRef]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A Systematic Review of Digital Removable Partial Dentures. Part II: CAD/CAM Framework, Artificial Teeth, and Denture Base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef]
- Papadiochou, S.; Pissiotis, A.L. Marginal Adaptation and CAD-CAM Technology: A Systematic Review of Restorative Material and Fabrication Techniques. J. Prosthet. Dent. 2018, 119, 545–551. [Google Scholar] [CrossRef]
- Lo Russo, L.; Chochlidakis, K.; Caradonna, G.; Molinelli, F.; Guida, L.; Ercoli, C. Removable Partial Dentures with Polyetheretherketone Framework: The Influence on Residual Ridge Stability. J. Prosthodont. 2022, 31, 333–340. [Google Scholar] [CrossRef]
- Elsarrif, H.; Mohamed, S.; Sabet, M. Effect of Different Techniques of CAD/CAM Designed BioHpp Frameworks on The Supporting Structures of Kennedy Class I Telescopic Partial Denture Cases. Egypt. Dent. J. 2021, 67, 3393–3402. [Google Scholar] [CrossRef]
- Nishiyama, H.; Taniguchi, A.; Tanaka, S.; Baba, K. Novel fully digital workflow for removable partial denture fabrication. J. Prosthodont. Res. 2020, 64, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Baker, S.; Sereno, N.; Martin, N. A Pilot Randomized Controlled Crossover Trial Comparing Early OHRQoL Outcomes of Cobalt-Chromium Versus PEEK Removable Partial Denture Frameworks. Int. J. Prosthodont. 2020, 33, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Rasha, H. Digital PEEK Framework and Patient Satisfaction Compared to Conventional Metal Framework in Removable Partial Dentures. A Clinical Trial. Egypt. Dent. J. 2019, 65, 3787–3794. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mao, B.; Zhu, Z.; Yu, J.; Lu, Y.; Zhang, Q.; Yue, L.; Yu, H. A Three-Dimensional Finite Element Analysis of Mechanical Function for 4 Removable Partial Denture Designs with 3 Framework Materials: CoCr, Ti-6Al-4V alloy and PEEK. Sci. Rep. 2019, 9, 13975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaf, M.Y.; Eskander, A.E. PEEK versus Metallic Attachment-Retained Obturators for Patient Satisfaction: A Randomized Controlled Trial. Eur. J. Dent. 2022, 16, 80–95. [Google Scholar] [CrossRef]
- Refai, O.M.; Nawar, N.H.; Lebshtien, I.T. Assessment of Retention of CAD-CAM Milled PEKK vs PEEK Double Crown-retained Removable Partial Dentures: A Randomized Clinical Trial. J. Contemp. Dent. Pract. 2022, 22, 1250–1256. [Google Scholar] [CrossRef]
- Herpel, C.; Springer, A.; Puschkin, G.; Zimmermann, L.; Stober, T.; Rammelsberg, P.; Schwindling, F.S. Removable Partial Dentures Retained by Hybrid CAD/CAM Cobalt–chrome Double Crowns: 1-year results from a prospective clinical study. J. Dent. 2021, 115, 103847. [Google Scholar] [CrossRef]
- Danielczak, R.A.; Stober, T.; Bömicke, W. Treatment with a CAD-CAM–fabricated, Double-crown–retained, Removable Partial Denture: A Clinical Report. J. Prosthet. Dent. 2019, 121, 220–224. [Google Scholar] [CrossRef]
- Lemos, C.A.A.; Verri, F.R.; de Batista, V.E.S.; Júnior, J.F.S.; Mello, C.C.; Pellizzer, E.P. Complete Overdentures Retained by Mini implants: A Systematic Review. J. Dent. 2017, 57, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Kortam, S. Metal versus Poly ether-ether ketone (PEEK) Framework Reinforcements for Maxillary Palateless Ball Retained Implant Overdentures. One Year Clinical and Radiographic Outcomes. Egypt. Dent. J. 2020, 66, 1817–1828. [Google Scholar] [CrossRef]
- Zoidis, P. Polyetheretherketone Overlay Prosthesis over High Noble Ball Attachments to Overcome Base Metal Sensitivity: A Clinical Report: PEEK Overdenture Framework. J. Prosthodont. 2018, 27, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharaf, M.Y.; Eskander, A.; Afify, M. Novel PEEK Retentive Elements versus Conventional Retentive Elements in Mandibular Overdentures: A Randomized Controlled Trial. Int. J. Dent. 2022, 2022, 6947756. [Google Scholar] [CrossRef] [PubMed]
- Abdraboh, A.; Elsyad, M.; Mourad, S.; Alameldeen, H. Milled Bar with PEEK and Metal Housings for Inclined Implants Supporting Mandibular Overdentures: 1-Year Clinical, Prosthetic, and Patient-Based Outcomes. Int. J. Oral. Maxillofac. Implant. 2020, 35, 982–989. [Google Scholar] [CrossRef]
- Mangano, F.; Mangano, C.; Margiani, B.; Admakin, O. Combining Intraoral and Face Scans for the Design and Fabrication of Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) Polyether-Ether-Ketone (PEEK) Implant-Supported Bars for Maxillary Overdentures. Scanning 2019, 2019, 4274715. [Google Scholar] [CrossRef] [Green Version]
- Brandão, T.B.; Vechiato Filho, A.J.; de Souza Batista, V.E.; de Oliveira, M.C.Q.; Santos-Silva, A.R. Obturator Prostheses Versus Free Tissue Transfers: A Systematic Review of the Optimal Approach to Improving the Quality of Life for Patients with Maxillary Defects. J. Prosthet. Dent. 2016, 115, 247–253.e4. [Google Scholar] [CrossRef]
- Costa-Palau, S.; Torrents-Nicolas, J.; Brufau-de Barberà, M.; Cabratosa-Termes, J. Use of Polyetheretherketone in the Fabrication of a Maxillary Obturator Prosthesis: A Clinical Report. J. Prosthet. Dent. 2014, 112, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, Z.; Sun, Y.; Zhou, Y. Fully Digital Workflow for the Design and Manufacture of Prostheses for Maxillectomy Defects. J. Prosthet. Dent. 2021, 126, 257–261. [Google Scholar] [CrossRef]
- Villefort, R.F.; Tribst, J.P.M.; Dal Piva, A.M.D.O.; Borges, A.L.; Binda, N.C.; de Ferreira, C.E.A.; Bottino, M.A.; von Zeidler, S.L.V. Stress Distribution on Different Bar Materials in Implant-retained Palatal Obturator. PLoS ONE 2020, 15, e0241589. [Google Scholar] [CrossRef]
- Tasopoulos, T.; Chatziemmanouil, D.; Kouveliotis, G.; Karaiskou, G.; Wang, J.; Zoidis, P. PEEK Maxillary Obturator Prosthesis Fabrication Using Intraoral Scanning, 3D Printing, and CAD/CAM. Int. J. Prosthodont. 2020, 33, 333–340. [Google Scholar] [CrossRef]
Author, Year | Type of the Study | Participants | Age (Mean/Range) | Intervention | Follow-up | Dropouts |
---|---|---|---|---|---|---|
Lo Russo et al., 2022 [79] | Case–control study | N = 10 | 46–72 | Milled PEEK framework | 12.5, 13 months | Not stated |
Males:3 | ||||||
Females:7 | ||||||
Lo Russo et al., 2021 [17] | Technique | Not reported | Not reported | Milled PEEK framework | 6 months | Not stated |
Elsarrif et al., 2021 [80] | Random control trial | N = 14 | 35–50 | Group I: Milled PEEK framework, Group II: Pressed PEEK framework | 6, 12 months | Not stated |
Males: | ||||||
Not reported | ||||||
Females: | ||||||
Not reported | ||||||
Nishiyama et al., 2020 [81] | Technique | N = 2 | 68,67 | PEEK clasps | 6 months | Not stated |
Males: | ||||||
Not reported | ||||||
Females: | ||||||
Not reported | ||||||
Ali et al., 2020 [82] | Random control trial crossovers | N = 26 | 39–85 | CoCr frameworks, Milled PEEK frameworks | 4 weeks, 6,12 months | 7 |
Males: 11 | ||||||
Females: 15 | ||||||
Mohamed et al., 2019 [83] | Clinical trial | N = 10 | 30–50 | CoCr frameworks, Milled PEEK frameworks | 3 months | Not stated |
Females: | ||||||
Not reported | ||||||
Males: | ||||||
Not reported | ||||||
Ichikawa et al., 2018 [41] | Case report | Female | 84 | Milled PEEK clasps | 2 years | Not stated |
Harb et al., 2018 [18] | Case report | Female | 56 | Milled PEEK frameworks | Not reported | Not stated |
Author, Year | Biological Outcome | Patient Satisfaction | Prosthodontic Outcomes |
---|---|---|---|
Lo Russo et al., 2022 [79] | Vertical height and 3D changes of residual ridges are not significantly different with or without PEEK RPDs. | Not reported | Not reported |
Lo Russo et al., 2021 [17] | Not reported | Not reported | No tooth or base debonding or other clinical complications |
Elsarrif et al., 2021 [80] | Milled BioHpp frameworks had a greater effect on bone resorption around the abutments than pressed BioHpp while at the residual ridge area, pressed BioHpp showed more bone height changes than the milled one. | Not reported | Not reported |
Nishiyama et al., 2020 [81] | Not reported | Improved patient satisfaction scores | No clinical complications. |
Ali et al., 2020 [82] | No significant differences were found in periodontal indexes. | Significant improvements to MDSQ in both groups | Not reported |
Mohamed et al., 2019 [83] | Not reported | Increased patient satisfaction of PEEK RPDs as compared with the conventional metal framework material | Not reported |
Ichikawa et al., 2018 [41] | No particular occlusal or periodontal problems | Satisfaction | Few color and texture changes in PEEK and no other clinical complications |
Harb et al., 2018 [18] | Not reported | Satisfaction | Not reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers 2022, 14, 4615. https://doi.org/10.3390/polym14214615
Liu Y, Fang M, Zhao R, Liu H, Li K, Tian M, Niu L, Xie R, Bai S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers. 2022; 14(21):4615. https://doi.org/10.3390/polym14214615
Chicago/Turabian StyleLiu, Yuchen, Ming Fang, Ruifeng Zhao, Hengyan Liu, Kangjie Li, Min Tian, Lina Niu, Rui Xie, and Shizhu Bai. 2022. "Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance" Polymers 14, no. 21: 4615. https://doi.org/10.3390/polym14214615
APA StyleLiu, Y., Fang, M., Zhao, R., Liu, H., Li, K., Tian, M., Niu, L., Xie, R., & Bai, S. (2022). Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers, 14(21), 4615. https://doi.org/10.3390/polym14214615