Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Hydrogel-Supported Ni/Pd Nanoclusters
2.3. Hydrolysis of DMAB Catalyzed by the Hydrogel Supported Ni/Pd Nanoclusters
2.4. Characterization of Hydrogel-Supported Ni/Pd Nanoclusters
3. Results and Discussion
3.1. Characterization of Ni/Pd Nanoclusters in the Hydrogel
3.2. Hydrolysis of DMAB Catalyzed by Ni/Pd Nanoclusters in the Hydrogel
3.3. Reusability of the Hydrogel Supported Ni/Pd Nanoclusters in the Hydrogen Production from DMAB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zou, K.; Wang, D.; Meng, W.; Qi, N.; Cao, Z.Q.; Zhang, K.; Chen, H.H.; Li, G.D. Highly efficient hydrogen evolution from the hydrolysis of ammonia borane solution with the Co-Mo-B/NF nanocatalyst. Renew. Energy 2020, 154, 453–460. [Google Scholar] [CrossRef]
- Staubitz, A.; Robertson, A.P.M.; Manners, I. Ammonia-borane and related compounds as dihydrogen sources. Chem. Rev. 2010, 110, 4079–4124. [Google Scholar] [CrossRef] [PubMed]
- Gulcan, M.; Zahmakiran, M.; Özkar, M. Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Appl. Catal. B Environ. 2014, 147, 394–401. [Google Scholar] [CrossRef]
- Acidereli, H.; Cellat, K.; Calimli, M.H.; Sen, F. Palladium/Ruthenium supported on graphene oxide (PdRu@GO) as an efficient, stable and rapid catalyst for hydrogen production from DMAB under room conditions. Renew. Energy 2020, 161, 200–206. [Google Scholar] [CrossRef]
- Karaboga, S.; Özkar, S. Ceria supported ruthenium nanoparticles: Remarkable catalyst for H2 evolution from dimethylamine borane. Int. J. Hydrogen Energy 2019, 44, 26296–26307. [Google Scholar] [CrossRef]
- Yempally, V.; Moncho, S.; Wang, Y.; Kyran, S.J.; Fan, W.; Brothers, E.N. Thermal dehydrogenation of dimethylamine borane catalyzed by a bifunctional rhenium complex. Organometallics 2019, 38, 2602–2609. [Google Scholar] [CrossRef]
- Valero-Pedraza, M.J.; Martin-Cortes, A.; Navarrete, A.; Bermejo, M.D.; Martin, A. Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids. Energy 2015, 91, 742–750. [Google Scholar] [CrossRef]
- Nugent, J.W.; Garcia-Melchor, M.; Fout, A.R. Cobalt-catalyzed ammonia borane dehydrogenation: Mechanistic insight and isolation of a cobalt hydride-amidoborane complex. Organometallics 2020, 39, 2917–2927. [Google Scholar] [CrossRef]
- Karaboga, S. Tungsten(VI) oxide supported rhodium(0) nanoparticles; highly efficient catalyst for H2 production from dimethylamine borane. Int. J. Hydrogen Energy 2021, 46, 17763–17775. [Google Scholar] [CrossRef]
- Jaska, C.A.; Manners, I. Catalytic dehydrocoupling of amine-borane and phosphine-borane adducts: The mechanism is heterogeneous in one case and homogeneous in the other. J. Am. Chem. Soc. 2004, 126, 1334–1335. [Google Scholar] [CrossRef]
- Jiang, Y.; Berke, H. Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations. Chem. Commun. 2007, 3571–3573. [Google Scholar] [CrossRef] [PubMed]
- Zahmakiran, M.; Özkar, S. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. Inorg. Chem. 2009, 48, 8955–8964. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Kusumoto, S.; Nozaki, K. Dehydrogenation of dimethylamine-borane catalyzed by half-sandwich Ir and Rh complexes: Mechanism and the role of Cp* noninnocence. Organometallics 2018, 37, 906–914. [Google Scholar] [CrossRef]
- Sen, B.; Aygun, A.; Savk, A.; Calimli, M.; Fellah, M.; Sen, F. Composites of platinum-iridium alloy nanoparticles and graphene oxide for the dimethyl amine borane (DMAB) dehydrogenation at ambient conditions: An experimental and density functional theory study. Sci. Rep. 2019, 9, 15543–15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, B.; Kuzu, S.; Demir, E.; Akocak, S.; Sen, F. Monodisperse palladium–nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine–borane. Int. J. Hydrogen Energy 2017, 42, 23276–23283. [Google Scholar] [CrossRef]
- Sen, B.; Kuyuldar, E.; Demirkan, B.; Onal, O.T.; Şavk, A.; Sen, F. Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 2018, 526, 480–486. [Google Scholar] [CrossRef]
- Sen, B.; Kuzu, S.; Demir, F.; Okyay, T.O.; Sen, F. Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 2017, 42, 23299–23306. [Google Scholar] [CrossRef]
- Sen, B.; Demirkan, B.; Savk, A.; Gülbay, S.K.; Sen, F. Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 17984–17992. [Google Scholar] [CrossRef]
- Karaboga, S.; Özkar, S. Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H2 from dimethylamine borane. Appl. Surf. Sci. 2019, 487, 433–441. [Google Scholar] [CrossRef]
- Karacan, Y.O.; Karaboga, S.; Morkan, I. Cu0/TiO2 nanoparticles as active catalyst for H2 production from dimethylamine borane. ChemistrySelect 2021, 6, 7076–7081. [Google Scholar] [CrossRef]
- Tanyıldızı, S.; Morkan; Özkar, S. Ceria supported copper(0) nanoparticles as efficient and cost-effective catalyst for the dehydrogenation of dimethylamine borane. Mol. Catal. 2017, 434, 57–68. [Google Scholar] [CrossRef]
- Robertson, A.P.M.; Suter, R.; Chabanne, L.; Whittell, G.R.; Manners, I. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts. Inorg. Chem. 2011, 50, 12680–12691. [Google Scholar] [CrossRef] [PubMed]
- Demir, H.; Duman, S. Monodisperse nickel nanoparticles in the solvent-free dehydrogenation of dimethylamine borane. Int. J. Hydrogen Energy 2015, 40, 10063–10071. [Google Scholar] [CrossRef]
- Al-mahamad, L.L.G. Gold nanoparticles as a catalyst for dehydrogenation reaction of dimethylamine borane at room temperature. Int. J. Hydrogen Energy 2020, 45, 11916–11922. [Google Scholar] [CrossRef]
- Bukan, B.; Duman, S. Green dehydrogenation of dimethylamine-borane catalyzed by in situ generated ruthenium nanoclusters in presence of various supporters and its comparison with classical methods. Int. J. Hydrogen Energy 2018, 43, 8278–8289. [Google Scholar] [CrossRef]
- Can, H.; Metin, O. Hydrogen generation via the catalytic hydrolysis of morpholine-borane: A new, efficient and cost effective hydrogen storage medium. Int. J. Hydrogen Energy 2019, 44, 25642–25651. [Google Scholar] [CrossRef]
- Li, J.J.; Guan, Q.Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z.H.; Ye, X.X.; Zheng, X.S.; Pan, H.B.; Zhu, J.F.; et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, F.Y.; Yang, S.; Moro, M.M.; Ramirez, M.A.; Moya, S.E.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic synergy in CoPt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal. 2019, 9, 1110–1119. [Google Scholar] [CrossRef]
- Cai, H.K.; Liu, L.P.; Chen, Q.; Lu, P.; Dong, J. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride. Energy 2016, 99, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.Z.; Qin, X.T.; Li, A.; Deng, Y.C.; Lin, L.L.; Zhang, M.; Yu, Q.L.; Li, S.W.; Peng, M.; Xu, Y.; et al. Maximizing the synergistic effect of CoNi catalyst on α-MoC for robust hydrogen production. J. Am. Chem. Soc. 2021, 143, 628–633. [Google Scholar] [CrossRef]
- Fang, R.M.; Yang, Z.Q.; Wang, Z.Q.; Ran, J.Y.; Yan, Y.F.; Zhang, L. Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation. Energy 2022, 244, 123187. [Google Scholar] [CrossRef]
- Wang, C.L.; Astruc, D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 2021, 50, 3437–3484. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Ouyang, L.Z.; Zhong, H.; Liu, J.W.; Wang, H.; Shao, H.Y.; Huang, Z.G.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 2020, 59, 8623–8629. [Google Scholar] [CrossRef]
- Liu, W.Y.; Cai, H.K.; Lu, P.; Xu, Q.M.; Zhongfu, Y.F.; Dong, J. Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2013, 38, 9206–9216. [Google Scholar] [CrossRef]
- Zhan, K.; You, H.H.; Liu, W.Y.; Lu, J.; Lu, P.; Dong, J. Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Funct. Polym. 2011, 71, 756–765. [Google Scholar] [CrossRef]
- Zhao, W.G.; Su, L.; Zhou, Z.N.; Zhang, H.J.; Lu, L.L.; Zhang, S.W. Preparation of Pd/Co bimetallic nanoparticles and their catalytic activity for hydrogen generation. Acta Phys. Chim. Sin. 2015, 31, 145–152. [Google Scholar]
- Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. Polymer-protected Ni/Pd bimetallic nano-clusters: Preparation, characterization and catalysis for hydrogenation of nitrobenzene. J. Phys. Chem. B 1999, 103, 9673–9682. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Fu, Q.; Wu, J.; Fan, G.Y. Ultrafine Pd nanoparticles supported on soft nitriding porous carbon for hydrogen production from hydrolytic dehydrogenation of dimethyl amine-borane. Nanomaterials 2020, 10, 1612. [Google Scholar] [CrossRef]
- Xu, F.H.; Liu, X. Synergistically promoted H2 evolution from dimethylamine-borane and hydrazine monohydrate by simply alloying of Pt/C with Ni. Fuel 2021, 304, 121433. [Google Scholar] [CrossRef]
- Rakap, M. Synthesis and characterization of bimetallic cobalt-rhodium nanoclusters as effective catalysts to produce hydrogen from ammonia borane hydrolysis. Renew. Energy 2020, 154, 1076–1082. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Wei, Q.H.; Zhang, L.L.; Zhao, Y.F.; Zhang, B. NiCo alloy decorated on porous n-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane. Renew. Energy 2021, 173, 273–282. [Google Scholar] [CrossRef]
- Tonbul, Y.; Akbayrak, S.; Ozkar, S. Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 11154–11162. [Google Scholar] [CrossRef]
- Durap, F.; Caliskan, S.; Ozkar, S.; Karakas, K.; Zahmakiran, M. Dihydrogen phosphate stabilized ruthenium(0) nanoparticles: Efficient nanocatalyst for the hydrolysis of ammonia-borane at room temperature. Materials 2015, 8, 4226–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P.V.; Delgass, W.N.; Gore, J.P. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. J. Power Source 2009, 188, 238–243. [Google Scholar] [CrossRef]
- Engin, M.; Ozay, O. The first catalytic hydrolysis of ethylenediamine bisborane with hydrogel-supported metallic nanoparticles. Int. J. Hydrogen Energy 2018, 43, 15083–15094. [Google Scholar] [CrossRef]
- Ozay, H.; Ilgin, P.; Sezgintürk, M.K.; Ozay, O. Pd nanoreactors with excellent catalytic activity supported in P(SPA) hydrogel networks for hydrogen production from ethylenediamine bisborane. Renew. Energy 2020, 155, 500–512. [Google Scholar] [CrossRef]
- Wechsler, D.; Cui, Y.; Dean, D.; Davis, B.; Jessop, P.G. Production of H2 from combined endothermic and exothermic hydrogen carriers. J. Am. Chem. Soc. 2008, 130, 17195–17203. [Google Scholar] [CrossRef]
- Zhou, J.J.; Meng, X.; Yan, J.Y.; Liu, X. Co/MoS2 nanocomposite catalyzed H2 evolution upon dimethylamine-borane hydrolysis and in situ tandem reaction. Inorg. Chem. Commun. 2021, 130, 108691. [Google Scholar] [CrossRef]
- Tunç, N.; Rakap, M. Surfactant-aided synthesis of RhCo nanoclusters as highly effective and recyclable catalysts for the hydrolysis of methylamine borane and dimethylamine borane. Catal. Sci. Technol. 2020, 10, 7865–7874. [Google Scholar] [CrossRef]
- Caliskan, S.; Zahmakiran, M.; Durap, F.; Ozkar, S. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst. Dalton Trans. 2012, 41, 4976–4984. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wen, H.; Zhou, D.J.; Huang, X.Y.; Wu, X.L.; Jiang, J.C.; Guo, X.J.; Li, B.J. Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Appl. Catal. B Environ. 2021, 291, 120094. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, X.L.; Zou, J.D.; Qin, Y.Q.; Wang, P. PdCo alloy supported on a ZIF-derived N-doped carbon hollow polyhedron for dehydrogenation of ammonia borane. ACS Appl. Energy Mater. 2022, 5, 7408–7419. [Google Scholar] [CrossRef]
- Guo, K.; Ding, Y.; Luo, J.; Gu, M.; Yu, Z.X. NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: Composition-dependent activity and support size effect. ACS Appl. Energy Mater. 2019, 2, 5851–5861. [Google Scholar] [CrossRef]
Pd | Ni/Pd = 5/1 | Ni/Pd = 10/1 | Ni/Pd = 20/1 | Ni/Pd = 30/1 | Ni | |
---|---|---|---|---|---|---|
actual molar ratio | - | 5.57/1 | 8.14/1 | 11.17/1 | 18.92/1 | - |
Ni mol% | 0 | 84.78 | 89.06 | 91.78 | 94.98 | 100 |
Pd | Ni/Pd = 5/1 | Ni/Pd = 10/1 | Ni/Pd = 20/1 | Ni/Pd = 30/1 | Ni | |
---|---|---|---|---|---|---|
V (mL) | 109 | 209 | 210 | 208 | 180 | 106 |
Yield (%) | 51.2 | 98.1 | 98.6 | 97.7 | 84.5 | 49.8 |
k (mL/min) | 1.08 | 1.37 | 1.68 | 2.46 | 1.75 | 1.09 |
m (g) | 0 | 0.8 | 1.0 | 1.4 |
---|---|---|---|---|
k (mL/min) | 0.21 | 1.81 | 2.46 | 4.40 |
Initial TOF (h−1) | - | 90 | 96 | 94 |
V (mL) | 4 | 184 | 208 | 208 |
Yield (%) | 1.9 | 86.4 | 97.7 | 97.7 |
Reaction time (min) | 160 | 100 | 95 | 70 |
Entry | Catalyst | Amine Borane Compound | Ea (kJ/mol) | Recyclability Runs | Ref. |
---|---|---|---|---|---|
1 | CoRh@PVP nanoclusters | AB | 42.7 | 5 | [40] |
2 | NiCo alloy on N-doped carbon | AB | 43.6 | 6 | [41] |
3 | Co-Mo-B on Ni foam | AB | 43.6 | - | [1] |
4 | Pd0/CeO2 | AB | 68.00 | 5 | [42] |
5 | Ru(0) nanoparticles | AB | 69.00 | 5 | [43] |
6 | Ru/C | AB | 76.00 | - | [44] |
7 | Ni in p(AAc-co-VI) | EDAB | 47.48 | - | [45] |
8 | Pd@p(SPA) | EDAB | 67.79 | 10 | [46] |
9 | Pd/C | DMAB | - | - | [47] |
10 | Ni-hydrogel | DMAB | 50.96 | 8 | [29] |
11 | Pt-Ni on carbon | DMAB | 39.79 | 5 | [39] |
12 | Co/MoS2 | DMAB | 58.31 | 5 | [48] |
13 | RhCo nanoclusters | DMAB | 50.3 | 5 | [49] |
14 | Ru(0) nanoparticles | DMAB | 92.4 | - | [50] |
15 | Pd/porous carbon | DMAB | 60.4 | 5 | [38] |
16 | Ni/Pd in hydrogel | DMAB | 34.95 | 20 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.-K.; Jiang, Z.-Y.; Xu, S.; Xu, Y.; Lu, P.; Dong, J. Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime. Polymers 2022, 14, 4647. https://doi.org/10.3390/polym14214647
Cai H-K, Jiang Z-Y, Xu S, Xu Y, Lu P, Dong J. Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime. Polymers. 2022; 14(21):4647. https://doi.org/10.3390/polym14214647
Chicago/Turabian StyleCai, Hao-Kun, Zhong-Yi Jiang, Siyuan Xu, Ying Xu, Ping Lu, and Jian Dong. 2022. "Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime" Polymers 14, no. 21: 4647. https://doi.org/10.3390/polym14214647
APA StyleCai, H. -K., Jiang, Z. -Y., Xu, S., Xu, Y., Lu, P., & Dong, J. (2022). Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime. Polymers, 14(21), 4647. https://doi.org/10.3390/polym14214647