Features of Composite Layers Created Using an Aqueous Suspension of a Fluoropolymer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Composition of Coatings
3.2. Electrochemical Studies
3.3. Wear Resistance of Coatings
3.4. Coatings Adhesion
3.5. Coating Wettability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and Advances in Magnesium Alloy Corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Birbilis, N.; Easton, M.A.; Sudholz, A.D.; Zhu, S.M.; Gibson, M.A. On the Corrosion of Binary Magnesium-Rare Earth Alloys. Corr. Sci. 2009, 51, 683–689. [Google Scholar] [CrossRef]
- Castellanos, A.; Altube, A.; Vega, J.M.; Díez, J.A.; Grande, H.J. Effect of Different Post-Treatments on the Corrosion Resistance and Tribological Properties of AZ91D Magnesium Alloy Coated PEO. Surf. Coat. Tech. 2015, 278, 99–107. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, C.F.; Bandopadhyay, S.; Ning, C.; Zhang, Y.; Guo, Y. Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid. Appl. Surf. Sci. 2012, 258, 6116–6126. [Google Scholar] [CrossRef]
- Yagi, S.; Sengoku, A.; Kubota, K.; Matsubara, E. Surface Modification of ACM522 Magnesium Alloy by Plasma Electrolytic Oxidation in Phosphate Electrolyte. Corr. Sci. 2012, 57, 74–80. [Google Scholar] [CrossRef]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Sun, P.; Jing, X. Ceramic Coatings of LA141 Alloy Formed by Plasma Electrolytic Oxidation for Corrosion Protection. ACS Appl. Mater. Interfaces 2011, 3, 3682–3690. [Google Scholar] [CrossRef]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of Magnesium Alloys: The Role of Alloying. Int. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
- Ilanaganar, E.; Anbuselvan, S. Wear Mechanisms of AZ31B Magnesium Alloy during Dry Sliding Condition. Mater. Today Proc. 2018, 5, 628–635. [Google Scholar] [CrossRef]
- Turan, M.E.; Sun, Y.; Akgul, Y.; Turen, Y.; Ahlatci, H. The Effect of GNPs on Wear and Corrosion Behaviors of Pure Magnesium. J. Alloy. Comp. 2017, 724, 14–23. [Google Scholar] [CrossRef]
- Gray, J.E.; Luan, B. Protective Coatings on Magnesium and Its Alloys—A Critical Review. J. Alloy. Comp. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered Double Hydroxide Coatings on Magnesium Alloys: A. Review. J. Mater. Sci. Tech. 2018, 34, 1455–1466. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, R.; Wang, J.; Li, Q.; Xing, X.; Liu, X.; Hu, W. Fabrication and Corrosion Resistance of Phosphate/ZnO Multilayer Protective Coating on Magnesium Alloy. Surf. Coat. Tech. 2018, 352, 74–83. [Google Scholar] [CrossRef]
- Ansari, M.I.; Thakur, D.S.G. Improvement of Wear Resistance of AZ91 Magnesium Alloy by Electroless Ni-P Coatings with Influence of Surfactant. Mater. Today Proc. 2017, 4, 9870–9874. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Ma, Y.; Song, G.-L.; Zheng, D.; Jiang, B.; Atrens, A.; Pan, F. Active Corrosion Protection by a Smart Coating Based on a MgAl-Layered Double Hydroxide on a Cerium-Modified Plasma Electrolytic Oxidation Coating on Mg Alloy AZ31. Corr. Sci. 2018, 139, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Cao, J.; Cheng, Y. An Improvement of the Wear and Corrosion Resistances of AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation in a Silicate-hexametaphosphate Electrolyte with the Suspension of SiC Nanoparticles. Surf. Coat. Tech. 2015, 276, 266–278. [Google Scholar] [CrossRef]
- Sathiyanarayanan, S.; Azim, S.S.; Venkatachari, G. Corrosion protection of magnesium ZM 21 alloy with polyaniline-TiO2 composite containing coatings. Prog. Org. Coat. 2007, 59, 291–296. [Google Scholar] [CrossRef]
- Hu, J.; Li, Q.; Zhong, X.; Zhang, L.; Chen, B. Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol-gel coatings. Prog. Org. Coat. 2009, 66, 199–205. [Google Scholar] [CrossRef]
- Ren, Y.; Babaie, E.; Bhaduri, S.B. Nanostructured amorphous magnesium phosphate/poly (lactic acid) composite coating for enhanced corrosion resistance and bioactivity of biodegradable AZ31 magnesium alloy. Prog. Org. Coat. 2018, 118, 1–8. [Google Scholar] [CrossRef]
- Jin, T.; Xie, Z.; Fullston, D.; Huang, C.; Zeng, R.; Bai, R. Corrosion resistance of copolymerization of acrylamide and acrylic acid grafted oxide composite coating on magnesium alloy. Prog. Org. Coat. 2019, 136, 105222. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Ding, X.; Jiang, B.; Atrens, A.; Pan, F. Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection. Prog. Org. Coat. 2019, 132, 144–147. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Moradi-Alavian, S.; Kazempour, A. Salt-nanoparticle systems incorporated into sol-gel coatings for corrosion protection of AZ91 magnesium alloy. Prog. Org. Coat. 2019, 135, 475–482. [Google Scholar] [CrossRef]
- Feng, X.; Zhu, C.; Lu, X.; Zhang, Y.; Wu, T.; Zuo, Y.; Zhao, X.; Dun, Y.; Wang, M. The influence of hydrofluoric acid doped polyaniline on the protective performance of a mg-rich epoxy coating on AZ91D magnesium alloy. Prog. Org. Coat. 2020, 141, 105550. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H. A study on the corrosion behavior and biological properties of polycaprolactone/bredigite composite coating on biodegradable Mg-Zn-Ca-GNP nanocomposite. Prog. Org. Coat. 2020, 147, 105822. [Google Scholar] [CrossRef]
- Wu, W.; Sun, X.; Zhu, C.-L.; Zhang, F.; Zeng, R.-C.; Zou, Y.; Li, S.-Q. Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31. Prog. Org. Coat. 2020, 147, 105746. [Google Scholar] [CrossRef]
- Li, X.; Shi, H.; Cui, Y.; Wei, K.P.W.; Liu, X. Dextran-caffeic acid/tetraaniline composite coating for simultaneous improvement of cytocompatibility and corrosion resistance of magnesium alloy. Prog. Org. Coat. 2020, 149, 105928. [Google Scholar] [CrossRef]
- Liu, F.; Shan, D.; Song, Y.; Han, E.H.; Ke, W. Corrosion Behavior of the Composite Ceramic Coating Containing Zirconium Oxides on AM30 Magnesium Alloy by Plasma Electrolytic Oxidation. Corr. Sci. 2011, 53, 3845–3852. [Google Scholar] [CrossRef]
- Dehnavi, V.; Binns, W.J.; Noël, J.J.; Shoesmith, D.W.; Luan, B.L. Growth Behaviour of Low-Energy Plasma Electrolytic Oxidation Coatings on a Magnesium Alloy. J. Magnes. Alloy 2018, 6, 229–237. [Google Scholar] [CrossRef]
- Tu, W.; Cheng, Y.; Wang, X.; Zhan, T.; Han, J.; Cheng, Y. Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy in Aluminate-Tungstate Electrolytes and the Coating Formation Mechanism. J. Alloys Compd. 2017, 725, 199–216. [Google Scholar] [CrossRef]
- Suna, M.; Yerokhin, A.; Bychkova, M.Y.; Shtansky, D.V.; Levashov, E.A.; Matthews, A. Self-Healing Plasma Electrolytic Oxidation Coatings Doped with Benzotriazole Loaded Halloysite Nanotubes on AM50 Magnesium Alloy. Corr. Sci. 2016, 111, 753–769. [Google Scholar] [CrossRef]
- Li, H.; Lu, S.; Qin, W.; Han, L.; Wu, X. Improving the Wear Properties of AZ31 Magnesium Alloy under Vacuum Low-Temperature Condition by Plasma Electrolytic Oxidation Coating. Acta Astro. 2015, 116, 126–131. [Google Scholar] [CrossRef]
- Gao, Y.; Yerokhin, A.; Matthews, A. Department DC Plasma Electrolytic Oxidation of Biodegradable Cp-Mg: In-Vitro Corrosion Studies. Surf. Coat. Tech. 2013, 234, 132–142. [Google Scholar] [CrossRef]
- Nadaraia, K.V.; Suchkov, S.N.; Imshinetskiy, I.M.; Mashtalyar, D.V.; Sinebrykhov, S.L.; Gnedenkov, S.V. Some new aspects of the study of dependence of properties of PEO coatings on the parameters of current in potentiodynamic mode. Surf. Coat. Tech. 2021, 426, 127744. [Google Scholar] [CrossRef]
- Němcová, A.; Skeldon, P.; Thompson, G.E.; Morse, S.; Čížek, J.; Pacal, B. Influence of Plasma Electrolytic Oxidation on Fatigue Performance of AZ61 Magnesium Alloy. Corr. Sci. 2014, 82, 58–66. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma Electrolysis for Surface Engineering. Surf. Coat. Tech. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Rouhaghdam, A.S.; Shahrabi, T. Abrasive Wear Behaviour of Si3N4/TiO2 Nanocomposite Coatings Fabricated by Plasma Electrolytic Oxidation. Surf. Coat. Tech. 2010, 205, S41–S46. [Google Scholar] [CrossRef]
- Cui, S.; Han, J.; Du, Y.; Li, W. Corrosion Resistance and Wear Resistance of Plasma Electrolytic Oxidation Coatings on Metal Matrix Composites. Surf. Coat. Tech. 2007, 201, 5306–5309. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Plekhova, N.G.; Imshinetskiy, I.M.; Piatkova, M.A.; Pleshkova, A.I.; Kislova, S.E.; Sinebryukhov, S.L.; Gnedenkov, S.V. Antibacterial Ca/P-coatings formed on Mg alloy using plasma electrolytic oxidation and antibiotic impregnation. Mater. Lett. 2022, 317, 132099. [Google Scholar] [CrossRef]
- Fuchs-Godec, R.; Zerjav, G. Corrosion Resistance of High-Level-Hydrophobic Layers in Combination with Vitamin E—(α-Tocopherol) as Green Inhibitor. Corr. Sci. 2015, 97, 7–16. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Chen, C.; Gu, Y. Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications. Corr. Sci. 2015, 91, 7–28. [Google Scholar] [CrossRef]
- Liu, G.; Tang, S.; Li, D.; Hu, J. Self-Adjustment of Calcium Phosphate Coating on Micro-Arc Oxidized Magnesium and Its Influence on the Corrosion Behaviour in Simulated Body Fluids. Corr. Sci. 2014, 79, 206–214. [Google Scholar] [CrossRef]
- Yao, Z.; Jia, F.; Tian, S.; Li, C.; Jiang, Z.; Bai, X. Microporous Ni-Doped TiO2 Film Photocatalyst by Plasma Electrolytic Oxidation. ACS Appl. Mater. Interfaces 2010, 2, 2617–2622. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Ko, Y.G.; Shin, D.H. Microstructural Characteristics of Oxide Layers Formed on Mg-9 Wt%Al-1 Wt%Zn Alloy via Two-Step Plasma Electrolytic Oxidation. J. Alloys Compd. 2014, 615, S418–S422. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Scharnagl, N.; Kainer, K.U. Influence of Incorporating Si3N4 Particles into the Oxide Layer Produced by Plasma Electrolytic Oxidation on AM50 Mg Alloy on Coating Morphology and Corrosion Properties. J. Magnes. Alloy. 2013, 1, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Aliasghari, S.; Němcová, A.; Burnett, T.L.; Kuběna, I.; Šmíd, M.; Thompson, G.E.; Skeldon, P.; Withers, P.J. X-Ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings. ACS Appl. Mater. Interfaces 2016, 8, 8801–8810. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tsai, D.S.; Wang, J.M.; Tsai, J.T.J.; Chou, C.C. Particle Size Influences on the Coating Microstructure through Green Chromia Inclusion in Plasma Electrolytic Oxidation. ACS Appl. Mater. Interfaces 2017, 9, 21864–21871. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; He, Y. Top Coating of Low-Molecular Weight Polymer MALPB Used for Enhanced Protection on Anodized AZ31B Mg Alloys. J. Coat. Tech. Res. 2010, 7, 737–746. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Knörnschild, G.; Snihirova, D.V.; Taryba, M.G.; Zheludkevich, M.L.; Ferreira, M.G.S. Complex Anticorrosion Coating for ZK30 Magnesium Alloy. Electrochim. Acta 2009, 55, 131–141. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Shrestha, S. Influence of Post-Treatment on the Corrosion Resistance of PEO Coated AM50B and AM60B Mg Alloys. Surf. Coat. Tech. 2010, 205, 1793–1798. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Nadaraia, K.V.; Kiryukhin, D.P.; Kichigina, G.A.; Kushch, P.P.; Buznik, V.M. Composite Coatings Formed on the PEO-Layers with the Use of Solutions of Tetrafluoroethylene Telomers. Surf. Coat. Tech. 2018, 346, 53–62. [Google Scholar] [CrossRef]
- Tan, A.L.K.; Soutar, A.M.; Annergren, I.F.; Liu, Y.N. Multilayer Sol-Gel Coatings for Corrosion Protection of Magnesium. Surf. Coat. Tech. 2005, 198, 478–482. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Imshinetskiy, I.M.; Nadaraia, K.V.; Gnedenkov, A.S.; Sinebryukhov, S.L.; Ustinov, A.Y.; Samokhin, A.V.; Gnedenkov, S.V. Influence of ZrO2/SiO2 nanomaterial incorporation on the properties of PEO layers on Mg-Mn-Ce alloy. J. Magnes. Alloy. 2021, 10, 513–526. [Google Scholar] [CrossRef]
- Li, Z.; Di, S. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum. Alloy. Met. 2017, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Nadaraia, K.V.; Kiryukhin, D.P.; Buznik, V.M.; Kichigina, G.A.; Kushch, P.P. Composite coatings formed by plasma electrolytic oxidation and using telomeric tetrafluoroethylene solutions. Russ. J. Inorgan. Chem. 2015, 60, 975–986. [Google Scholar] [CrossRef]
- Lu, C.; Feng, X.; Yang, J.; Jia, J.; Yi, G.; Xie, E.; Sun, Y. Influence of surface microstructure on tribological properties of PEO-PTFE coating formed on aluminum alloy. Surf. Coat. Tech. 2019, 364, 127–134. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Egorkin, V.S.; Vyalyi, I.E.; Mashtalyar, D.V.; Nadaraia, K.V.; Ryabov, D.K.; Buznik, V.M. Formation and properties of composite coatings on aluminum alloys. Russ. J. Inorgan. Chem. 2017, 62, 1–11. [Google Scholar] [CrossRef]
- Tsai, D.-S.; Tsai, Y.-C.; Chou, C.-C. Corrosion passivation of magnesium alloy with the duplex coatings of plasma electrolytic oxidation and tetrafluoroethylene-based polymers. Surf. Coat. Tech. 2019, 366, 15–23. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Cao, G.; Chen, J.; Zou, Y.; Yang, B.; Ouyang, J.; Jia, D.; Zhou, Y. Highly reliable double-layer coatings on magnesium alloy surfaces for robust superhydrophobicity, chemical durability and electrical property. Ceram. Int. 2021, 47, 35037–35047. [Google Scholar] [CrossRef]
- Cho, S.; Yoon, Y.J.; Kim, H.T.; Kim, J.-H.; Kim, H.-J.; Nam, S.; Baik, H.; Kim, J.-H. Growth of Al2O3-PTFE composite film at room temperature by aerosol deposition method. Ceram. Int. 2012, 38, S131–S134. [Google Scholar] [CrossRef]
- Mortezanejad, E.; Atapour, M.; Salimijazi, H.; Alhaji, A.; Hakimizad, A. Wear and Corrosion Behavior of Aluminate- and Phosphate-Based Plasma Electrolytic Oxidation Coatings with Polytetrafluoroethylene Nanoparticles on AZ80 Mg Alloy. J. Mat. Engin. Perform. 2021, 30, 4030–4044. [Google Scholar] [CrossRef]
- Rudnev, V.S.; Vaganov-Vil’kins, A.A.; Tsvetnikov, A.K.; Nedozorov, P.M.; Yarovaya, T.P.; Kuryavy, V.G.; Dmitrieva, E.E.; Kirichenko, E.A. Certain characteristics of composite polytetrafluoroethylene-oxide coatings on aluminum alloy. Prot. Met. Phys. Chem. Surf. 2015, 51, 112–126. [Google Scholar] [CrossRef]
- Vaganov-Vil’kins, A.A.; Rudnev, V.S.; Pavlov, A.D.; Sukhoverkhov, S.V.; Kostin, V.I.; Lukiyanchuk, I.V. IR and Py-GC/MS investigation of composite PTFE/PEO coatings on aluminum. Mat. Chem. Phys. 2019, 221, 436–446. [Google Scholar] [CrossRef]
- Vaganov-Vil’kins, A.A.; Rudnev, V.S.; Pavlov, A.D.; Sukhoverkhov, S.V. Compositions of Composite Polymer-Oxide Coatings on Aluminum from Pyrolytic Gas Chromatography Mass-Spectrometry Data. Prot. Met. Phys. Chem. Surf. 2018, 54, 442–447. [Google Scholar] [CrossRef]
- Rudnev, V.S.; Vaganov-Vil’kins, A.A.; Yarovaya, T.P.; Pavlov, A.D. Polytetrafluoroethylene-oxide coatings on aluminum alloys. Surf. Coat. Tech. 2016, 307, 1249–1254. [Google Scholar] [CrossRef]
- Rudnev, V.S.; Vaganov-Vil’kins, A.A.; Nedozorov, P.M.; Yarovaya, T.P.; Avramenko, V.; Tsvetnikov, A.; Sergienko, V.I. Hybrid polytetrafluoroethylene oxide coatings on aluminum and titanium formed by plasma-electrolytic oxidation. Prot. Met. Phys. Chem. Surf. 2013, 49, 87–94. [Google Scholar] [CrossRef]
- Gao, M.-L.; Wu, X.-B.; Gao, P.-P.; Lei, T.; Liu, C.-X.; Xie, Z.-Y. Properties of hydrophobic carbon-PTFE composite coating with high corrosion resistance by facile preparation on pure Ti. Trans. Nonferr. Met. Soc. China 2019, 29, 2321–2330. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Zhang, D.; Ren, P.; Liao, D.; Cai, L. Study on corrosion resistance of TC4 titanium alloy micro-arc oxidation/(PTFE + graphite) composite coating. Int. J. Appl. Ceram. Technol. 2022, 19, 397–408. [Google Scholar] [CrossRef]
- Lu, C.; Shi, P.; Yang, J.; Jia, J.; Xie, E.; Sun, Y. Effects of surface texturing on the tribological behaviors of PEO/PTFE coating on aluminum alloy for heavy-load and long-performance applications. J. Mater. Res. Technol. 2020, 9, 12149–12156. [Google Scholar] [CrossRef]
- Lu, C.; Ding, J.; Shi, P.; Jia, J.; Xie, E.; Sun, Y. Effects of Texture Density on the Tribological Properties of Plasma Electrolytic Oxidation/Polytetrafluoroethylene Coatings Formed on Aluminum Alloys. Macromol. Mater. Eng. 2021, 307, 2100678. [Google Scholar] [CrossRef]
- Ren, L.; Wang, T.; Chen, Z.; Li, Y.; Qian, L. Self-Lubricating PEO-PTFE Composite Coating on Titanium. Metals 2019, 9, 170. [Google Scholar] [CrossRef]
- Henry, F.; Renaux, F.; Coppée, S.; Lazzaroni, R.; Vandencasteele, N.; Reniers, F.; Snyders, R. Synthesis of Superhydrophobic PTFE-like Thin Films by Self- Nanostructuration in a Hybrid Plasma Process. Surf. Sci. 2012, 606, 1825–1829. [Google Scholar] [CrossRef]
- Fouhaili, B.E.L.; Dietlin, C.; Allonas, X.; Ibrahim, A.; Delaite, C.; Croutxé-Barghorn, C. Study and Optimization of Water Repellence Stability in Fluoroacrylate Photopolymers. Prog. Org. Coat. 2014, 77, 1030–1036. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Belov, E.A.; Imshinetskiy, I.; Kiryukhin, D.P.; Sinebryukhov, S.L.; Buznik, V.M.; Gnedenkov, S.V. Synthesis of polymeric system based on polyethylene oxide and tetrafluoroethylene telomers to obtain films with switchable wettability. J. Molec. Liq. 2022, 350, 118225. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Imshinetskiy, I.M.; Sinebryukhov, S.L.; Gnedenkov, S.V. New approach to formation of coatings on Mg-Mn-Ce alloy using a combination of plasma treatment and spraying of fluoropolymers. J. Magnes. Alloys 2021, 10, 1033–1050. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, G.; Chen, Y.; Zeng, Q. Electrophoretic Deposition of PTFE Particles on Porous Anodic Aluminum Oxide Film and Its Tribological Properties. Appl. Surf. Sci. 2014, 290, 466–474. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Qi, Y.; Cai, W.; Jiang, Z. Self-Lubricating Al2O3/PTFE Composite Coating Formation on Surface of Aluminium Alloy. Surf. Coat. Tech. 2010, 204, 3315–3318. [Google Scholar] [CrossRef]
- Li, S.; Zhu, M.; Liu, J.; Yu, M.; Wu, L.; Zhang, J.; Liang, H. Enhanced Tribological Behavior of Anodic Films Containing SiC and PTFE Nanoparticles on Ti6Al4V Alloy. Appl. Surf. Sci. 2014, 316, 28–35. [Google Scholar] [CrossRef]
- Martini, C.; Ceschini, L.; Tarterini, F.; Paillard, J.M.; Curran, J.A. PEO Layers Obtained from Mixed Aluminate-Phosphate Baths on Ti-6Al-4V: Dry Sliding Behaviour and Influence of a PTFE Topcoat. Wear 2010, 269, 747–756. [Google Scholar] [CrossRef]
- Egorkin, V.S.; Mashtalyar, D.V.; Gnedenkov, A.S.; Filonina, V.S.; Vyaliy, I.E.; Nadaraia, K.V.; Imshinetskiy, I.M.; Belov, E.A.; Izotov, N.V.; Sinebryukhov, S.L.; et al. Icephobic Performance of Combined Fluorine-Containing Composite Layers on Al-Mg-Mn-Si Alloy Surface. Polymers 2021, 13, 3827. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Buznik, V.M.; Emel’Yanenko, A.M.; Boinovich, L.B. Hydrophobic properties of composite fluoropolymer coatings on titanium. Prot. Met. Phys. Chem. Surf. 2011, 47, 93–101. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Zavidnaya, A.G.; Egorkin, V.S.; Puz’, A.V.; Mashtalyar, D.V.; Sergienko, V.I.; Yerokhin, A.L.; Matthews, A. Composite hydroxyapatite-PTFE coatings on Mg-Mn-Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. J. Taiw. Inst. Chem. Eng. 2014, 45, 3104–3109. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Sidorova, M.V.; Gnedenkov, A.S. Composite polymer-containing protective coatings on magnesium alloy MA8. Corr. Sci. 2014, 85, 52–59. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M. Composite fluoropolymer coatings on Mg alloys formed by plasma electrolytic oxidation in combination with electrophoretic deposition. Surf. Coat. Tech. 2015, 283, 347–352. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M.; Gnedenkov, A.; Samokhin, A.V.; Tsvetkov, Y.V. Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8. Vacuum 2015, 120, 107–114. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M. Electrochemical and tribological properties of protective composite coatings on Mg-alloy MA8, formed by plasma electrolytic oxidation and electrophoresis precipitation methods. Tsvet. Met. 2015, 2015, 55–61. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Nadaraia, K.V.; Gnedenkov, A.S.; Bouznik, V.M. Composite Fluoropolymer Coatings on the MA8 Magnesium Alloy Surface. Corr. Sci. 2016, 111, 175–185. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Sinebryukhov, S.L.; Gnedenkov, S.V. Polymer-Containing Layers Formed by PEO and Spray-Coating Method. Mater. Today: Proceed. 2019, 11, 150–154. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Imshinetskiy, I.M.; Belov, E.A.; Filonina, V.S.; Suchkov, S.N.; Sinebryukhov, S.L.; Gnedenkov, S.V. Composite coatings formed on Ti by PEO and fluoropolymer treatment. Appl. Surf. Sci. 2021, 536, 147976. [Google Scholar] [CrossRef]
- Ignatieva, L.N.; Gorbenko, O.M.; Kuryavyi, V.G.; Savchenko, N.N.; Pavlov, A.D.; Mashtalyar, D.V.; Bouznik, V.M. Characteristics of the Structure and Properties of Low-Temperature Fractions Recovered from the Powder Ultradispersed Polytetrafluoroethylene by Sublimation. J. Fluor. Chem. 2013, 156, 246–252. [Google Scholar] [CrossRef]
- Mori, Y.; Koshi, A.; Liao, J.; Asoh, H.; Ono, S. Characteristics and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Formed in Phosphat-Silicate Mixture Electrolytes. Corr. Sci. 2014, 88, 254–262. [Google Scholar] [CrossRef]
- Barati, D.G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism, Properties and Applications. J. Magnes. Alloy 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Li, D.; Neumann, A. Contact Angles on Hydrophobic Solid Surfaces and Their Interpretation. J. Colloid Interface Sci. 1992, 148, 190–200. [Google Scholar] [CrossRef]
- Waghmare, P.R.; Mitra, S.K. Contact Angle Hysteresis of Microbead Suspensions. Langmuir 2010, 26, 17082–17089. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhang, X. Contact angle hysteresis analysis on superhydrophobic surface based on the design of channel and pillar models. Mater. Des. 2017, 131, 323–333. [Google Scholar] [CrossRef]
Sample | EC (V) | RP (Ω cm2) | IC (A cm−2) | |Z|f = 0.01 Hz (Ω cm2) |
---|---|---|---|---|
Without coating | −1.56 | 489.5 | 3.3 10−5 | 717.7 |
With PEO coating | −1.43 | 1.1 105 | 2.4 10−7 | 6.3 104 |
CC 1X | −0.91 | 2.2 108 | 2.5 10−10 | 1.3 108 |
CC 2X | −0.18 | 2.9 108 | 1.6 10−10 | 1.8 109 |
CC 3X | 0.12 | 6.3 108 | 7.7 10−11 | 2.8 109 |
Sample | R1 (Ω cm2) | CPE | R2 (Ω cm2) | CPE | R3 (Ω cm2) | CPE | |||
---|---|---|---|---|---|---|---|---|---|
Q1 (Ω −1 cm−2 cn) | n1 | Q2 (Ω −1 cm−2 cn) | n2 | Q3 (Ω −1 cm−2 cn) | n3 | ||||
Mg alloy | – | – | – | 477 | 3.32 10−5 | 0.85 | – | – | – |
PEO coating | 8.9 103 | 2.1 10−7 | 0.76 | 3.3 104 | 9.9 10−7 | 0.65 | – | – | – |
CC 1X | 1.1 103 | 7.4 10−9 | 0.54 | 9.9 103 | 3.6 10−9 | 0.98 | 2.4 108 | 4.8 10−9 | 0.85 |
CC 2X | 1.7 103 | 2.5 10−9 | 0.70 | 3.2 106 | 4.2 10−10 | 0.99 | 1010 | 1.2 10−9 | 0.99 |
CC 3X | 1.6 103 | 10−9 | 0.60 | 4.2 106 | 9.7 10−10 | 0.94 | 1.2 1010 | 7.2 10−10 | 0.98 |
Sample | |Z|f = 0,01 Гц (Ω cm2) | ||
---|---|---|---|
1 h | 24 h | 72 h | |
CC 1X | 1.43 107 | 3.33 105 | 1.46 105 |
CC 2X | 2.08 108 | 1.41 106 | 3.36 105 |
CC 3X | 2.1 108 | 9.57 106 | 1.31 107 |
Sample | Wear (mm3 N−1 m−1) | LC2 (N) | LC3 (N) |
---|---|---|---|
With PEO coating | 1.7 10−3 | 4.6 | 10.2 |
CC 1X | 9.9 10−4 | 6.7 | 11.9 |
CC 2X | 2.0 10−4 | 6.8 | 12.9 |
CC 3X | 6.1 10−5 | 6.8 | 13.1 |
Sample | Contact Angle (°) | Contact Angle Hysteresis (°) |
---|---|---|
PEO coating | 45.3 ± 1.2 | – |
CC 1X | 146.5 ± 0.5 | – |
CC 2X | 153.9 ± 1.4 | 9.7 ± 0.3 |
CC 3X | 152.3 ± 0.9 | 11.3 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashtalyar, D.V.; Nadaraia, K.V.; Belov, E.A.; Imshinetskiy, I.M.; Sinebrukhov, S.L.; Gnedenkov, S.V. Features of Composite Layers Created Using an Aqueous Suspension of a Fluoropolymer. Polymers 2022, 14, 4667. https://doi.org/10.3390/polym14214667
Mashtalyar DV, Nadaraia KV, Belov EA, Imshinetskiy IM, Sinebrukhov SL, Gnedenkov SV. Features of Composite Layers Created Using an Aqueous Suspension of a Fluoropolymer. Polymers. 2022; 14(21):4667. https://doi.org/10.3390/polym14214667
Chicago/Turabian StyleMashtalyar, Dmitriy Valerievich, Konstantine Vakhtangovich Nadaraia, Evgeny Alekseevich Belov, Igor Mikhaylovich Imshinetskiy, Sergey Leonidovich Sinebrukhov, and Sergey Vasilevich Gnedenkov. 2022. "Features of Composite Layers Created Using an Aqueous Suspension of a Fluoropolymer" Polymers 14, no. 21: 4667. https://doi.org/10.3390/polym14214667
APA StyleMashtalyar, D. V., Nadaraia, K. V., Belov, E. A., Imshinetskiy, I. M., Sinebrukhov, S. L., & Gnedenkov, S. V. (2022). Features of Composite Layers Created Using an Aqueous Suspension of a Fluoropolymer. Polymers, 14(21), 4667. https://doi.org/10.3390/polym14214667