Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Polymer Solutions for Electrospinning
2.3. Electrospinning Process
2.4. Morphological Characterization of Nanostructures
2.5. Preparation and Characterization of Dispersions of Electrospun Nanostructures in Castor Oil
3. Results and Discussion
3.1. Physicochemical Properties of LSL:EC Solutions
3.2. Electrospinnability of LSL:EC Solutions
3.3. Rheological and Tribological Properties of Dispersions of Electrospun Nanostructures in Castor Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Nakane, K. Preparation of polymeric nanofibers via immersion electrospinning. Eur. Polym. J. 2020, 134, 109837. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Cui, Z.; Li, D.; Yue, G.; Liu, J.; Ding, H.; Gao, S.; Zhao, Y.; Wang, N.; Zhao, Y. Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos. Commun. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gough, C.R.; Deng, Q.; Gu, Z.; Wang, F.; Hu, X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int. J. Mol. Sci. 2020, 21, 4019. [Google Scholar] [CrossRef] [PubMed]
- Deka, M.; Nath, A.K.; Kumar, A. Ionic conduction and phase separation studies in PEO–P(VdF–HFP)–LiClO4–dedoped polyaniline nanofiber composite polymer electrolytes—I. Indian J. Phys. 2010, 84, 1299–1305. [Google Scholar] [CrossRef]
- Sehaqui, H.; Ezekiel Mushi, N.; Morimune, S.; Salajkova, M.; Nishino, T.; Berglund, L.A. Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. ACS Appl. Mater. Interfaces 2012, 4, 1043–1049. [Google Scholar] [CrossRef]
- Jao, D.; Beachley, V.Z. Continuous dual-track fabrication of polymer micro-/nano-fibers based fibers based on direct drawing. ACS Macro Lett. 2019, 8, 588–595. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.H.; Zhai, J.; Song, Y.L.; Jiang, L.; Zhu, D.B. Template based synthesis of aligned polyacrylonitrile nanofibers using a novel extrusion method. Synth. Met. 2003, 135, 817–818. [Google Scholar] [CrossRef]
- Sun, F.; Chen, L.; Ding, X.F.; Xu, L.; Zhou, X.; Wei, P.; Liang, J.F.; Luo, S.Z. High–resolution insights into the stepwise self–assembly of nanofiber from bioactive peptides. J. Phys. Chem. 2017, 121, 7421–7430. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 4836–4846. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Mendes, A.C.; Stephansen, K.; Chronakis, I.S. Electrospinning of food proteins and polysaccharides. Food Hydrocoll. 2017, 68, 53–68. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, S.H.; Kim, H.J.; Yang, Y.H.; Hong, J.H.; Kim, Y.-H.; Kim, H. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr. Polym. 2012, 88, 395–398. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 6185. [Google Scholar] [CrossRef]
- Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Zhao, W.; Simmons, B.; Singh, S.; Ragauskas, A.; Cheng, G. From lignin association to nano-/micro-particle preparation: Extracting higher value of lignin. Green Chem. 2016, 18, 5693–5700. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- Laskar, D.D.; Yang, B.; Wang, H.; Lee, J. Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels Bioprod. Biorefin. 2013, 7, 602–626. [Google Scholar] [CrossRef]
- Dallmeyer, I.; Ko, F.; Kadla, J.F. Electrospinning of technical lignins for the production of fibrous networks. J. Wood Chem. Technol. 2010, 30, 315–329. [Google Scholar] [CrossRef]
- Lai, C.; Zhou, Z.; Zhang, L.; Wang, X.; Zhou, Q.; Zhao, Y.; Wang, Y.; Wu, X.F.; Zhu, Z.; Fong, H. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J. Power Sources 2014, 247, 134–141. [Google Scholar] [CrossRef]
- Ago, M.; Okajima, K.; Jakes, J.E.; Park, S.; Rojas, O.J. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 2012, 13, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Aslanzadeh, S.; Ahvazi, B.; Boluk, Y.; Ayranci, C. Morphologies of electrospun fibers of lignin in poly(ethylene oxide)/N,N dimethylformamide. J. Appl. Polym. Sci. 2016, 133, 44. [Google Scholar] [CrossRef]
- Dallmeyer, I.; Ko, F.; Kadla, J.F. Correlation of elongational fluid properties to fiber diameter in electrospinning of softwood kraft lignin solutions. Ind. Eng. Chem. Res. 2014, 53, 2697–2705. [Google Scholar] [CrossRef]
- Kai, D.; Chong, H.M.; Chow, L.P.; Jiang, L.; Lin, Q.; Zhang, K.; Zhang, H.; Zhang, Z.; Loh, X.J. Strong and biocompatible lignin/poly (3-hydroxybutyrate) composite nanofibers. Compos. Sci. Technol. 2018, 158, 26–33. [Google Scholar] [CrossRef]
- Wang, J.; Tian, L.; Luo, B.; Ramakrishna, S.; Kai, D.; Loh, X.J.; Yang, I.H.; Deen, G.R.; Mo, X. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids Surf. B Biointerfaces 2018, 169, 356–365. [Google Scholar] [CrossRef]
- Kai, D.; Zhang, K.; Jiang, L.; Wong, Z.H.; Li, Z.; Zhang, Z.; Loh, X.J. Sustainable and antioxidant lignin-polyester copolymers and nanofibers for potential healthcare applications. ACS Sustain. Chem. Eng. 2017, 5, 6016–6025. [Google Scholar] [CrossRef]
- Kai, D.; Ren, W.; Tian, L.; Lin Chee, P.; Liu, Y.; Ramakrishna, S.; Loh, X.J. Engineering poly (lactide)-lignin nanofibers with antioxidant activity for biomedical application. ACS Sustain. Chem. Eng. 2016, 4, 5268–5276. [Google Scholar] [CrossRef]
- Borrego, M.; Martín-Alfonso, J.E.; Sánchez, M.C.; Valencia, C.; Franco, J.M. Electrospun lignin-PVP nanofibers and their ability for structuring oil. Int. J. Biol. Macromol. 2021, 180, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Martín-Alfonso, J.E.; Núñez, N.; Valencia, C.; Franco, J.M.; Díaz, M.J. Formulation of new biodegradable lubricating greases using ethylated cellulose pulp as thickener agent. J. Ind. Eng. Chem. 2011, 17, 818–823. [Google Scholar] [CrossRef]
- Pernetti, M.; van Malssen, K.F.; Flöter, E.; Bot, A. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 2007, 12, 221–231. [Google Scholar] [CrossRef]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar]
- Singh, A.; Auzanneau, F.-I.; Rogers, M.A. Advances in edible oleogel technologies–A decade in review. Int. Food Res. J. 2017, 97, 307–317. [Google Scholar] [CrossRef]
- Zetzl, A.K.; Gravelle, A.J.; Kurylowicz, M.; Dutcher, J.; Barbut, S.; Marangoni, A.G. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2014, 2, 27–40. [Google Scholar] [CrossRef]
- Patel, A.R.; Schatteman, D.; Lesaffer, A.; Dewettinck, K. A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Adv. 2003, 3, 22900–22903. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, W.; Van der Meeren, P.; Dewettinck, K.; Patel, A.R. High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil. Food Funct. 2018, 9, 1993–1997. [Google Scholar] [CrossRef]
- De Vries, A.; Wesseling, A.; van der Linden, E.; Scholten, E. Protein oleogels from heat-set whey protein aggregates. J. Colloid Interface Sci. 2017, 486, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Borrego, M.; Martín-Alfonso, J.E.; Valencia, C.; Sánchez, M.C.; Franco, J.M. Developing electrospun ethylcellulose nanofibrous webs: An alternative approach for structuring castor oil. ACS Appl. Polym. Mater. 2022, 4, 7217–7227. [Google Scholar] [CrossRef]
- Rubio-Valle, J.F.; Sánchez, M.C.; Valencia, C.; Martín-Alfonso, J.E.; Franco, J.M. Electrohydrodynamic processing of pvp-doped kraft lignin micro- and nano-structures and application of electrospun nanofiber templates to produce oleogels. Polymers 2021, 13, 2206. [Google Scholar] [CrossRef] [PubMed]
- Borrego, M.; Martín-Alfonso, J.E.; Sánchez, M.C.; Valencia, C.; Franco, J.M. Influence of surfactants on the electrospinnability of lignin-PVP solutions and subsequent oil structuring properties of nanofber mats. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Anna, S.L.; McKinley, G.H.; Nguyen, D.A.; Sridhar, T.; Muller, S.J.; Huang, J.; James, D.F. An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J. Rheol. 2001, 45, 83–114. [Google Scholar] [CrossRef] [Green Version]
- Arnolds, O.; Buggisch, H.; Sachsenheimer, D.; Willenbacher, N. Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions. Rheol. Acta 2010, 49, 1207–1217. [Google Scholar] [CrossRef]
- Gorbacheva, S.N.; Yadykova, A.Y.; Ilyin, S.O. Rheological and tribological properties of low-temperature greases based on cellulose acetate butyrate gel. Carbohydr. Polym. 2021, 272, 118509. [Google Scholar] [CrossRef]
- Gallego, R.; Cidade, T.; Sánchez, R.; Valencia, C.; Franco, J.M. Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel-steel rotating ball-on-three plates tribology cell. Tribol. Int. 2016, 94, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Martín-Alfonso, J.E.; Franco, J.M. Ethylene-vinyl acetate copolymer (EVA)/sunflower vegetable oil polymer gels: Influence of vinyl acetate content. Polym. Test. 2014, 37, 78–85. [Google Scholar] [CrossRef]
- Delgado, M.A.; Cortés-Triviño, E.; Valencia, C.; Franco, J.M. Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribol. Int. 2020, 146, 106231. [Google Scholar] [CrossRef]
Concentration (%.wt) | LSL:EC Ratio (%) | Electrical Conductivity, s (μS/cm) | Surface Tension, (mN/m) | Newtonian Viscosity, ƞ (Pa·s) | ƞo (Pa·s) | k (s) | m (-) | Extensional Viscosity ƞext,o (Pa·s) | Do (mm) | Relaxation time, λ (ms) | A (-) |
---|---|---|---|---|---|---|---|---|---|---|---|
8% | 0:100 50:50 70:30 90:10 | 33.53 (±2.5 10−1) 75.01 (±2.3 10−1) 103.63 (±2.1 10−1) 108.20 (±1.0 10−1) | 32.91 (±6.0 10−1) 28.21 (±1.0 10−1) 29.26 (±7.0 10−1) 28.89 (±1.5 10−1) | 1.48 (±2 10−1) 1.2 × 10−1 (±3 10−2) 4.8 × 10−2 (±1 10−2) 4.5 × 10−3 (±3 10−4) | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
10% | 0:100 50:50 70:30 90:10 | 32.01 (±2.6 10−1) 98.27 (±6.5 10−1) 110.17 (±1.2 10−1) 127.27 (±4.1 10−1) | 32.51 (±1.1) 28.86 (±4.0 10−1) 29.67 (±1.3 10−1) 28.74 (±2.5 10−1) | - - 1.4 × 10−1 (±9 10−2) 1.2 × 10−2 (±5 10−3) | 5.9 1.4 - - | 36.2 1.95 - - | 0.31 0.32 - - | 14.9 3.14 0.49 0.14 | 2.75 1.87 1.68 0.14 | 143 57 32 6 | 0.6 0.7 0.9 124.7 |
15% | 0:100 50:50 70:30 90:10 | 30.81 (±3.0 10−1) 90.97 (±4.6 10−1) 148.21 (±3.0 10−1) 292.67 (±4.2 10−1) | 31.71 (±9.0 10−1) 27.46 (±8.0 10−1) 25.73 (±7.0 10−1) 20.35 (±1.3) | - - - 2.3 × 10−2 (±6 10−3) | 419.1 24.7 0.9 - | 0.81 30.43 54.54 - | 0.79 0.41 0.22 - | 223.4 53.99 2.72 0.25 | 4.97 3.27 1.33 1.51 | - 96 32 7 | - 0.3 0.4 2.1 |
Systems | Fiber Diameter (μm) | |
---|---|---|
8% | 50:50 70:30 90:10 | 0.17 ± 5.7 10−2 Beads Beads |
10% | 50:50 70:30 90:10 | 0.19 ± 3.4 10−2 0.12 ± 4.1 10−2 Beads |
15% | 50:50 70:30 90:10 | 0.23 ± 5.2 10−2 0.22 ± 4.8 10−2 0.15 ± 1.1 10−1 |
Concentration (wt%) | Ratio LSL:EC | Nanostructure Concentration (wt%) | Friction Coefficient (-) | Wear Scar Diameter (μm) |
---|---|---|---|---|
15% | 50:50 | 1020 | 0.088 ± 2.2 10−3 0.077 ± 3.7 10−3 | 225 ± 12.1 228 ± 14.4 |
70:30 | 10 20 30 | 0.094 ± 5.1 10−3 0.088 ± 1.5 10−3 0.082 ± 1.9 10−3 | 259 ± 42.3 252 ± 8.3 208 ± 39.8 | |
90:10 | 20 30 | 0.089 ± 4.6 10−3 0.081 ± 5.2 10−3 | 250 ± 24.9 201 ± 6.1 | |
Castor oil | 0.071 ± 2.9 10−3 | 523 ± 13.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego, M.; Martín-Alfonso, J.E.; Valencia, C.; Sánchez, M.C.; Franco, J.M. Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil. Polymers 2022, 14, 4741. https://doi.org/10.3390/polym14214741
Borrego M, Martín-Alfonso JE, Valencia C, Sánchez MC, Franco JM. Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil. Polymers. 2022; 14(21):4741. https://doi.org/10.3390/polym14214741
Chicago/Turabian StyleBorrego, María, José E. Martín-Alfonso, Concepción Valencia, M. Carmen Sánchez, and José M. Franco. 2022. "Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil" Polymers 14, no. 21: 4741. https://doi.org/10.3390/polym14214741
APA StyleBorrego, M., Martín-Alfonso, J. E., Valencia, C., Sánchez, M. C., & Franco, J. M. (2022). Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil. Polymers, 14(21), 4741. https://doi.org/10.3390/polym14214741