Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Phenolic Compound Extraction
2.3. Quantification of Total Phenolics
2.4. Encapsulation of Phenolic Compounds by Ionic Gelation
2.5. Characterization of the Alginate Particles
2.5.1. Optical Microscopy
2.5.2. Encapsulation Efficiency (% EE)
2.5.3. Swelling Index
2.5.4. Release Profile
2.5.5. Differential Scanning Calorimetry—DSC
2.6. Behavior under In Vitro Gastrointestinal Digestion
2.6.1. In Vitro Gastrointestinal Digestion
2.6.2. Quantification of Total Phenolic Compounds after In Vitro Gastrointestinal Digestion
2.6.3. Antioxidant Activity of the Extracts after the In Vitro Gastrointestinal Digestion
2.6.4. Bioaccessibility
2.7. Statistical Analyses
3. Results and Discussion
3.1. Particle Size and Morphology
3.2. Encapsulation Efficiency (%)
3.3. Swelling Degree
3.4. Release Profile
3.5. Differential Scanning Calorimetric Analysis (DSC)
3.6. In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurozawa, L.E.; Hubinger, M.D. Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin. Food Sci. 2017, 15, 50–55. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci.Nutr. 1999, 50, 213–224. [Google Scholar]
- De Assis, L.M.; da Rosa Zavareze, E.; Prentice-Hernández, C.; de Souza-Soares, L.A. Revisão: Características de nanopartículas e potenciais aplicações em alimentos. Braz. J. Food Technol. 2012, 15, 99–109. [Google Scholar] [CrossRef]
- da S. Lyra, L.P. Nanoemulsion from Geraniol and Essential Oil of Palmarosa (Cymbopogon Martinii) and It’s Inhibitory Action against Cutibacterium Acnes Strains. Master’s Thesis, Paulista State University “Júlio de Mesquita Filho”, UNESP, Botucatu, Brazil, 2019. [Google Scholar]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Barros, F.A.R.D.; Stringheta, P.C. Microencapsulamento de antocianinas: Uma alternativa para o aumento de sua aplicabilidade como ingrediente alimentício. Biotecnol. Ciência E Desenvolv. 2006, 36, 18–24. [Google Scholar]
- Mancini, F.; McHugh, T.H. Fruit-alginate interactions in novel restructured products. Food Nahr. 2000, 44, 152–157. [Google Scholar] [CrossRef]
- Ramos, P.E.; Cerqueira, M.A.; Teixeira, J.A.; Vicente, A.A. Physiological protection of probiotic microcapsules by coatings. Crit. Rev. Food Sci. Nutr. 2018, 58, 1864–1877. [Google Scholar] [CrossRef]
- Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 2008, 57, 397–430. [Google Scholar] [CrossRef]
- Becker, T.A.; Kipke, D.R.; Brandon, T. Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J. Biomed. Mater. Res. 2001, 54, 76–86. [Google Scholar] [CrossRef]
- Gombotz, W.R.; Wee, S. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 1998, 31, 267–285. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate gel particles–A review of production techniques and physical properties. Crit. Ver. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Yoon, S.G.; Lee, S.M.; Lee, J.H.; Kim, S.I. Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HCl solutions. Sens. Actuators B. Chem. 2003, 96, 1–5. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Crit. Ver. Food Sci. Nutr. 2021, 61, 3100–3118. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Shao, P.; Luo, Y.; Sun, P. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll. 2020, 99, 105376. [Google Scholar] [CrossRef]
- Hariyadi, D.M.; Islam, N. Current Status of Alginate in Drug Delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 8886095. [Google Scholar] [CrossRef]
- de Moura, S.C.S.R.; Berling, C.L.; Germer, S.P.M.; Alvim, I.D.; Hubinger, M.D. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem. 2018, 241, 317–327. [Google Scholar] [CrossRef]
- Arriola, N.D.A.; de Medeiros, P.M.; Prudencio, E.S.; Müller, C.M.O.; de Mello Castanho Amboni, R.D. Encapsulation of aqueous leaf extract of Stevia rebaudiana Bertoni with sodium alginate and its impact on phenolic content. Food Biosci. 2016, 13, 32–40. [Google Scholar] [CrossRef]
- Naranjo-Durán, A.M.; Quintero-Quiroz, J.; Rojas-Camargo, J.; Ciro-Gómez, G.L. Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Sci. Rep. 2021, 11, 1317. [Google Scholar] [CrossRef]
- Mar, J.M.; da Silva, L.S.; da S. Rabello, M.; Biondo, M.M.; Kinupp, V.F.; Campelo, P.H.; Bruginski, E.; Campos, S.R.; de Araújo Bezerra, J.; Sanches, E.A. Development of alginate/inulin carrier systems containing non-conventional Amazonian berry extracts. Food Res. Int. 2021, 139, 109838. [Google Scholar]
- Yousefi, M.; Khanniri, E.; Shadnoush, M.; Khorshidian, N.; Mortazavian, A.M. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. Int. J. Biol. Macromol. 2020, 163, 44–54. [Google Scholar] [CrossRef]
- Lehto, S.; Buchweitz, M.; Klimm, A.; Straßburger, R.; Bechtold, C.; Ulberth, F. Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Addit. Contam. Part A 2017, 34, 335–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, A.R.; Rodrigues, R.S.; Machado, M.R.G.; Souza-Soares, L.A. Influência da Spirulina LEB-18 em tamanho nanométrico no metabolismo de ratos fêmeas Wistar. Rev. Ciênc. Agrár. 2014, 37, 29–36. [Google Scholar]
- Parisi, A.S.; Younes, S.; Reinehr, C.O.; Colla, L.M. Assessment of the antibacterial activity of microalgae Spimlina platensis. J. Basic Appl. Pharm. Sci. 2009, 39, 297–301. [Google Scholar]
- Flamminii, F.; Di Mattia, C.D.; Nardella, M.; Chiarini, M.; Valbonetti, L.; Neri, L.; Difonzo, G.; Pittia, P. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll. 2020, 108, 105849. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.C. Microencapsulation of grape skin phenolics for pH-controlled release of antiglycation agents. Food Res. Int. 2019, 119, 822–828. [Google Scholar] [CrossRef]
- Vieira, M.V.; Pastrana, L.M.; Fuciños, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar. Drugs 2020, 18, 644. [Google Scholar] [CrossRef]
- Rajmohan, D.; Bellmer, D. Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation. Int. J. Food Sci. 2019, 2019, 7101279. [Google Scholar] [CrossRef]
- Nourmohammadi, N.; Soleimanian-Zad, S.; Shekarchizadeh, H. Effect of Spirulina (Arthrospira platensis) microencapsulated in alginate and whey protein concentrate addition on physicochemical and organoleptic properties of functional stirred yogurt. J. Sci. Food Agric. 2020, 100, 5260–5268. [Google Scholar] [CrossRef]
- Zen, C.K.; Tiepo, C.B.V.; da Silva, R.V.; Reinehr, C.O.; Gutkoski, L.C.; Oro, T.; Colla, L.M. Development of functional pasta with microencapsulated Spirulina: Technological and sensorial effects. J. Sci. Food Agric. 2020, 100, 2018–2026. [Google Scholar] [CrossRef]
- Abraham, R.E.; Su, P.; Puri, M.; Raston, C.L.; Zhang, W. Release of encapsulated bioactives influenced by alginate viscosity under in-vitro gastrointestinal model. Int. J. Biol. Macromol. 2021, 170, 540–548. [Google Scholar] [CrossRef]
- De Morais, M.G.; Costa, J.A.V. Perfil de ácidos graxos de microalgas cultivadas com dióxido de carbono. Ciência E Agrotecnologia 2008, 32, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.A.V.; Colla, L.M.; Filho, P.F.D. Improving Spirulina platensis biomass yield using a fed-batch process. Bioresour. Technol. 2004, 92, 237–241. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.M. Potencial Antifúngico, Antioxidante e Inibidor da Produção de Aflatoxina por Extratos Fenólicos de Chlorella sp. E Spirulina Platensis. Ph.D. Thesis, Federal University of Rio Grande, Porto Alegre, Brazil, 2012. [Google Scholar]
- De Souza, M.M.; Recart, V.M.; da Rocha, M.; Cipolatti, E.P.; Badiale-Furlong, E. Study on the extracting conditions of phenolic compounds from onion (Allium cepa L.). Rev. Inst. Adolfo. Lutz. 2009, 68, 192–200. [Google Scholar]
- Vidart, J.M.M.; Nakashima, M.; da Silva, T.L.; Rosa, P.C.P.; Gimenes, M.L.; Vieira, M.G.A.; da Silva, M.G.C. Sericin and Alginate Blend as Matrix for Incorporation of Diclofenac Sodium. Chem. Eng. Trans. 2016, 52, 343–348. [Google Scholar]
- Ramos, P.E.; Silva, P.; Alario, M.M.; Pastrana, L.M.; Teixeira, J.A.; Cerqueira, M.A.; Vicente, A.A. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll. 2018, 77, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Khandai, M.; Chakraborty, S.; Sharma, A. Preparation and evaluation of algino-sericin mucoadhesive microspheres: An approach for sustained drug delivery. J. Adv. Pharm. Res. 2010, 1, 48–60. [Google Scholar]
- Da Silva, P.M.P. Analysis of an Edible Coating of Chitosan as an Alternative to Glazing of Frozen Salmon. Master’s Dissertation, University of Minho, Braga, Portugal, 2015. [Google Scholar]
- Costa, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll. 2018, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Pasparakis, G.; Bouropoulos, N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int. J. Pharm. 2006, 323, 34–42. [Google Scholar] [CrossRef]
- Barbizan, O.A. Production and Evaluation of Alginate Microparticles Containing Zinc Bacitracin, Berberine and Sodium Nitroprusside Sodium Nitroprusside Coated with Chitosan for Treatment of Bacterioses Extracted from Fish. Ph.D. Thesis, University of Brasilia, Brasilia, Brazil, 2019. [Google Scholar]
- Kleinubing, S.A. Controlled Release of Oxytetracycline Encapsulated in Alginate/Chitosan Matrix Coated with Acril-EZE® MP in Fluidized Bed. Master’s Thesis, State University of Campinas, Campinas, Brazil, 2013. [Google Scholar]
- Berens, A.R.; Hopfenberg, H.B. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978, 19, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Maricato, E.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 2015, 115, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Martín-Álvarez, P.J.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem. 2005, 93, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, A.C.; Coimbra, M.A.; Vicente, A.A. In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers—Effect of interfacial composition. Food Hydrocoll. 2016, 52, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Li, Y.; McClements, D.J.; Xiao, H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 2012, 132, 799–807. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchem. J. 2019, 147, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Živković, I.P.; Jurić, S.; Vinceković, M.; Galešić, M.A.; Marijan, M.; Vlahovićek-Kahlina, K.; Mikac, K.M.; Lemic, D. Polyphenol-Based Microencapsulated Extracts as Novel Green Insecticides for Sustainable Management of Polyphagous Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855). Sustainability 2020, 12, 10079. [Google Scholar] [CrossRef]
- Dai, Y.N.; Li, P.; Zhang, J.P.; Wang, A.Q.; Wei, Q. Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate–chitosan hydrogel beads. J. Biomed. Mater. Res. B. Appl. Biomater. 2008, 86B, 493–500. [Google Scholar] [CrossRef]
- Etchepare, M.A.; da Silveira Cáceres de Menezes, M.F.; Rodrigues, L.Z.; Codevilla, C.F.; de Menezes, C.R. Microencapsulação de compostos bioativos pelo método de extrusão. Ciênc. E Nat. 2015, 37, 97–105. [Google Scholar] [CrossRef]
- Pereira, K.C. Microencapsulation and Release of Oregano Essential Oil Microparticles Obtained by Atomization Drying Process. Master’s Dissertation, Federal University of the Valleys of Jequitinhonha and Mucuri, Diamantina, Brazil, 2018. [Google Scholar]
- Duarte, D.M. Study of the Spherification and Production Technology of Large Alginate/Pectin Spheres with Liquid Center. Master’s Thesis, Polytechnic Institute of Viana do Castelo, Viana do Castelo, Portugal, 2015. [Google Scholar]
- Bassani, J.C. Immobilization of Microbial Cells in Calcium Alginate Beads and Evaluation of Cell Viability and Biochemical Stability Under Different Storage Conditions. Master’s Thesis, Federal University Tecnologic of Paraná, Curitiba, Brazil, 2018. [Google Scholar]
- Laos, K.; Lõugas, T.; Mändmets, A.; Vokk, R. Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innov. Food Sci. Emerg. Technol. 2007, 8, 395–398. [Google Scholar] [CrossRef]
- de Moura, S.C.S.R.; Berling, C.L.; Garcia, A.O.; Queiroz, M.B.; Alvim, I.D.; Hubinger, M.D. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res. Int. 2019, 121, 542–552. [Google Scholar] [CrossRef]
- Kovaleski, G.; Bittencourt, J.V.M.; Rodrigues, S.A. Estudo da Imobilização Celular de Saccharomyces Cerevisiae em Alginato de Cálcio; AYA Editora: Ponta Grossa, Brasil, 2020; p. 71. [Google Scholar]
- Vargas, P.O. Drying of Calcium Alginate Particles. Master´s Thesis, University State University of the North Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil, 2017. [Google Scholar]
- Zerbini, M.T. Immobilization and Biochemical Characterization of the Enzyme &Β-Glycosidase (BG-Lfa2) in Sodium al-Ginate Polymer. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2020. [Google Scholar]
- Caleffi, T.S.L. Microencapsulation of Blackberry Pulp by Coacervation and Spray. Master’s Thesis, Federal University of Paraná, Curitiba, Brazil, 2014. [Google Scholar]
- Cacuro, T.A. Alginate Composites as a Smart Material, Solubility Modulation and Teaching Object. Ph.D. Thesis, Federal University of São Carlos, São Carlos, Brazil, 2019. [Google Scholar]
- Aliste, A.J. Use of Antioxidant Substances in the Radiation Response of Hydrocolloids Carrageenan, Agaran and Alginate Used in the Food Industry. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2006. [Google Scholar]
- Barros-Santos, R. Study of Factors that Influence the Attributes of Alginate Spheres. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2012. [Google Scholar]
- Huang, J.; Bai, F.; Wu, Y.; Ye, Q.; Liang, D.; Shi, C.; Zhang, X. Development and evaluation of lutein-loaded alginate microspheres with improved stability and antioxidant. J. Sci. Food Agric. 2019, 99, 5195–5201. [Google Scholar] [CrossRef] [PubMed]
- Szekalska, M.; Sosnowska, K.; Czajkowska-Kośnik, A.; Winnicka, K. Calcium Chloride Modified Alginate Microparticles Formulated by the Spray Drying Process: A Strategy to Prolong the Release of Freely Soluble Drugs. Materials 2018, 11, 1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belščak-Cvitanović, A.; Vojvodić, A.; Bušić, A.; Keppler, J.; Steffen-Heins, A.; Komes, D. Encapsulation templated approach to valorization of cocoa husk, poppy and hemp macrostructural and bioactive constituents. Ind. Crops Prod. 2018, 112, 402–411. [Google Scholar] [CrossRef]
- Li, Q.; Duan, M.; Hou, D.; Chen, X.; Shi, J.; Zhou, W. Fabrication and characterization of Ca(II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols. Food Hydrocoll. 2021, 112, 106274. [Google Scholar] [CrossRef]
- Yilmaztekin, M.; Lević, S.; Kalušević, A.; Cam, M.; Bugarski, B.; Rakić, V.; Pavlović, V.; Nedović, V. Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. J. Microencapsul. 2019, 36, 109–119. [Google Scholar] [CrossRef]
- Leong, J.-Y.; Lam, W.-H.; Ho, K.-W.; Voo, W.-P.; Lee, M.F.-X.; Lim, H.-P.; Lim, S.-L.; Tey, B.-T.; Poncelet, D.; Chan, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 2016, 24, 44–60. [Google Scholar] [CrossRef]
- Flamminii, F.; Paciulli, M.; Di Michele, A.; Littardi, P.; Carini, E.; Chiavaro, E.; Pittia, P.; Di Mattia, C.D. Alginate-based microparticles structured with different biopolymers and enriched with a phenolic-rich olive leaves extract: A physico-chemical characterization. Curr. Res. Food Sci. 2021, 4, 698–706. [Google Scholar] [CrossRef]
- Ida, S.; Katsurada, A.; Tsujio, M.; Nakamura, M.; Hirokawa, Y. Crosslinker-Based Regulation of Swelling Behavior of Poly(N-isopropylacrylamide) Gels in a Post-Polymerization Crosslinking System. Gels 2019, 6, 2. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef]
- Khare, A.R.; Peppas, N.A. Swelling/deswelling of anionic copolymer gels. Biomaterials 1995, 16, 559–567. [Google Scholar] [CrossRef]
- Jovic, T.H.; Kungwengwe, G.; Mills, A.C.; Whitaker, I.S. Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications. Front. Mech. Eng. 2019, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Barros, A.A.; Quraishi, S.; Gurikov, P.; Raman, S.P.; Smirnova, I.; Duarte, A.R.C.; Reis, R.L. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit Fluids 2015, 106, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.R.; Sakiyama-Elbert, S.E.; Zhang, G.; Yaszemski, M.J. Biomaterials Science: An Introduction to Materials in Medicine, 4th ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 153–166. [Google Scholar]
- Tam, K.C.; Wyn-Jones, E. Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques. Chem. Soc. Ver. 2006, 35, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Horst, B.L. Microencapsulation of the Natural Dye Anthocyanin in Chitosan and Chitosan/Alginate Polymeric Matrix through Impregnation, Coacervation and Spray Drying Techniques. Master’s Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2009. [Google Scholar]
- Gurikov, P.; Smirnova, I. Amorphization of drugs by adsorptive precipitation from supercritical solutions: A review. J. Supercrit. Fluids 2018, 132, 105–125. [Google Scholar] [CrossRef]
- Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and Chitosan/Ethylene Oxide-Propylene Oxide Block Copolymer Nanoparticles as Novel Carriers for Proteins and Vaccines. Pharm. Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef]
- Nagavarma, B.V.N.; Yada, H.K.; Ayaz, A.V.L.S.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 2012, 5, 16–23. [Google Scholar]
- Sullca, V. Different Strategies to Obtain Antimicrobial Biodegradable Films for Food Applications, Using Starch and/or Chitosan with or without Essential Oils. Ph.D. Thesis, Valencia Polytechnic University, Valencia, Spain, 2017. [Google Scholar]
- Gazori, T.; Khoshayand, M.R.; Azizi, E.; Yazdizade, P.; Nomani, A.; Haririan, I. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr. Polym. 2009, 77, 599–606. [Google Scholar] [CrossRef]
- Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym. 2006, 66, 1–7. [Google Scholar] [CrossRef]
- Soares, J.P.; Santos, J.E.; Chierice, G.O.; Cavalheiro, E.T.G. Thermal behavior of alginic acid and its sodium salt. Eclética Quím. 2004, 29, 57–64. [Google Scholar] [CrossRef] [Green Version]
- de Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, O.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv. 2020, 38, 107287. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Li, F.; Xiao, H. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annu Ver. Food Sci. Technol. 2015, 6, 299–327. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Etienne-Mesmin, L.; Livrelli, V.; Denis, S.; Blanquet-Diot, S.; Alric, M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012, 30, 591–600. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. Disintegration of Solid Foods in Human Stomach. J. Food Sci. 2008, 73, R67–R80. [Google Scholar] [CrossRef]
- Madalena, D.A.; Ramos, O.L.; Pereira, R.N.; Bourbon, A.I.; Pinheiro, A.C.; Malcata, F.X.; Teixeira, J.A.; Vicente, A.A. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocoll. 2016, 58, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, A.C.; Lad, M.; Silva, H.D.; Coimbra, M.A.; Boland, M.; Vicente, A.A. Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: Effect of the surface charge. Soft Matter 2013, 9, 3147–3154. [Google Scholar] [CrossRef] [Green Version]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release 2006, 114, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Mishra, V.; Bhoop, B.S.; Katare, O.P. Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid. (Part A). Systematic optimization, development and characterization. Int. J. Pharm. 2015, 495, 220–233. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Chew, S.C.; Tan, C.P.; Long, K.; Nyam, K.L. In-vitro evaluation of kenaf seed oil in chitosan coated-high methoxyl pectin-alginate microcapsules. Ind. Crops Prod. 2015, 76, 230–236. [Google Scholar] [CrossRef]
- Torres-Escribano, S.; Denis, S.; Blanquet-Diot, S.; Calatayud, M.; Barrios, L.; Vélez, D.; Alric, M.; Montoro, R. Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp. (IAEA-140/TM) and Lobster hepatopancreas (TORT-2). Sci. Total Environ. 2011, 409, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; Pérez-Ciordia, S.; Marín-Arroyo, M.R.; McClements, D.J. Improving Resveratrol Bioaccessibility Using Biopolymer Nanoparticles and Complexes: Impact of Protein–Carbohydrate Maillard Conjugation. J. Agric. Food Chem. 2015, 63, 3915–3923. [Google Scholar] [CrossRef]
- Machado, A.R.; Pinheiro, A.C.; Vicente, A.A.; Souza-Soares, L.A.; Cerqueira, M.A. Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Res. Int. 2019, 120, 656–667. [Google Scholar] [CrossRef]
Alginate Concentration (%) | Particle Size (mm) | ||
---|---|---|---|
CaCl2 Concentration (mol·L−1) | |||
1.0 | 0.5 | 0.25 | |
2 | 3.33 ± 0.42 A,a | 2.91 ± 0.28 A,a,b | 2.64 ± 0.26 A,B,b,c |
1.5 | 3.02 ± 0.35 A,B,a,b | 2.81 ± 0.15 A,a,b | 2.49 ± 0.27 B,b,c |
1 | 2.83 ± 0.22 B,a | 2.80 ± 0.43 A,a | 2.87 ± 0.35 A,a |
pH | RMSE | R2 | X | kF (min−1) | kR (min−1) |
---|---|---|---|---|---|
7.2 | 0.099 | 0.900 | 0.204 (110.73%) | 7.18 × 10−2 (594.49%) | 7.63 × 10−3 (28.43%) |
Sample | Thermal Properties | ||
---|---|---|---|
To (°C) | Tm (°C) | Tf (°C) | |
Alginate particles | 95.33 | 142.33 | 205.33 |
Alginate particles with phenolic compounds | 121.21 | 172.5 | 207.83 |
Quantification of Phenolic Compounds (µg sample/mL) | ||||
---|---|---|---|---|
Sample | Initial | Oral Phase | Gastric Phase | Intestinal Phase |
Phenolic compounds | 11.29 ± 1.79 A;a | 9.69 ± 0.20 A;c | 6.63 ± 0.26 B;e | 3.92 ± 0.36 C;f |
Alginate particles with phenolic compounds | 13.87 ± 1.22 D;a | 12.29 ± 1.45 D;E;b | 12.21 ± 0.68 D;E, d | 9.43 ± 1.86 E;f |
Antioxidant activity—%ASR * | ||||
Initial | Oral phase | Gastric phase | Intestinal phase | |
Phenolic compounds | 15.27 ± 1.40 A;b | 17.14 ± 2.22 A;d | 19.79 ± 2.16 A;f | 2.88 ± 0.41 B;h |
Alginate particles with phenolic compoundst | 30.16 ± 4.72 C;a | 35.99 ± 2.80 C;c | 21.66 ± 2.50 D; e | 12.14 ± 3.09 E;g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, A.R.; Silva, P.M.P.; Vicente, A.A.; Souza-Soares, L.A.; Pinheiro, A.C.; Cerqueira, M.A. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers 2022, 14, 4759. https://doi.org/10.3390/polym14214759
Machado AR, Silva PMP, Vicente AA, Souza-Soares LA, Pinheiro AC, Cerqueira MA. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers. 2022; 14(21):4759. https://doi.org/10.3390/polym14214759
Chicago/Turabian StyleMachado, Adriana R., Pedro M. P. Silva, António A. Vicente, Leonor A. Souza-Soares, Ana C. Pinheiro, and Miguel A. Cerqueira. 2022. "Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior" Polymers 14, no. 21: 4759. https://doi.org/10.3390/polym14214759
APA StyleMachado, A. R., Silva, P. M. P., Vicente, A. A., Souza-Soares, L. A., Pinheiro, A. C., & Cerqueira, M. A. (2022). Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers, 14(21), 4759. https://doi.org/10.3390/polym14214759