Multifunctional Polymeric Micelles for Cancer Therapy
Abstract
:1. Introduction
2. Polymeric Micelles
3. Polymeric Micelles with Passive Targeting Function
4. Polymeric Micelles with Active Targeting Function
5. Polymeric Micelles with Stimuli-Responsive Function and Their Applications in Photothermal Therapy
6. Polymeric Micelles with Imaging and Theranostic Functions and Their Applications in Photodynamic Therapy
7. Clinical Trials
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, C.; Wang, C.; Fan, W.; Zhang, Z.; Wen, Y.; Xiong, L.; Chen, X. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 2019, 49, 1904329. [Google Scholar] [CrossRef] [PubMed]
- Mamalis, A.G. Recent advances in nanotechnology. J. Mater. Process. Technol. 2007, 181, 52–58. [Google Scholar] [CrossRef]
- Cheng, C.T.; Gabriel, C.; Chun-Hsin, L.; Pauline, L. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin. Chim. Acta 2019, 492, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rejinold, N.S.; Choi, G.; Choy, J.H. Recent developments on semiconducting polymer nanoparticles as smart photo-therapeutic agents for cancer treatments—A review. Polymers 2021, 13, 981. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Mahmood, B.; Mohammad, S.A.; Mohammad, E.T.Y.; Mohadeseh, H.; Abbas, R.; Rajender, S.V. Applications of plant-based nanoparticles in nanomedicine: A review. Sustain. Chem. Pharm. 2022, 25, 100606. [Google Scholar] [CrossRef]
- Li, P.; Wang, D.; Hu, J.; Yang, X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv. Drug Deliv. Rev. 2022, 189, 114447. [Google Scholar] [CrossRef]
- Quader, S.; Kazunori, K.; Horacio, C. Nanomedicine for brain cancer. Adv. Drug Deliv. Rev. 2022, 182, 114115. [Google Scholar] [CrossRef]
- Lia, X.; Chen, L.; Luan, S.; Zhou, J.; Xiao, X.; Yang, Y.; Mao, C.; Fang, P.; Chen, L.; Zeng, X.; et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin. Cancer Biol. 2022, 86, 873–885. [Google Scholar] [CrossRef]
- Souri, M.; Soltani, M.; Farshad, M.K.; Mohammad, K.S.; Mohsen, C.; Fatemeh, S.S.; Mohammad, R.M.; Lance, L.M. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater. Today Bio 2022, 13, 100208. [Google Scholar] [CrossRef]
- Song, Y.; Yue, D.; Chang-Ming, D. Stimuli-responsive polypeptide nanoassemblies: Recent progress and applications in cancer nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1742. [Google Scholar] [CrossRef]
- Kaur, J.; Monica, G.; Niraj, K.J.; John, D.; Vandana, P.; Kamal, D.; Sachin, K.S. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov. Today 2022, 27, 1495–1512. [Google Scholar] [CrossRef] [PubMed]
- Junnuthula, V.; Kolimi, P.; Nyavanandi, D.; Sampathi, S.; Vora, L.K.; Dyawanapelly, S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022, 14, 1860. [Google Scholar] [CrossRef] [PubMed]
- Varela-Moreira, A.; Yang, S.; Marcel, H.F.; Twan, L.; Wim, E.H.; Raymond, M.S. Clinical application of polymeric micelles for the treatment of cancer. Mater. Chem. Front. 2017, 1, 1485–1501. [Google Scholar] [CrossRef]
- Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progr. Polym. Sci. 2009, 34, 893–910. [Google Scholar] [CrossRef]
- Li, F.; Xie, C.; Cheng, Z.; Xia, H. Ultrasound responsive block copolymer micelle of poly (ethylene glycol)–poly (propylene glycol) obtained through click reaction. Ultrason. Sonochem. 2016, 30, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Jelvehgari, M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran. J. Basic Med. Sci. 2018, 21, 153. [Google Scholar] [PubMed]
- Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly (ethylene glycol)–polylactide micelles for cancer therapy. Front. Pharmacol. 2018, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.M.; Bae, Y.H.; Jo, W.H. pH-induced Micelle Formation of Poly (histidine-co-phenylalanine)-block-Poly (ethylene glycol) in Aqueous Media. Macromol. Biosci. 2005, 5, 1118–1124. [Google Scholar] [CrossRef]
- Harada, A.; Kataoka, K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly (ethylene glycol) segments. Macromolecules 1995, 28, 5294–5299. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Granados, J.C.; Short, J.D.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity. Oncol. Lett. 2012, 3, 45–49. [Google Scholar] [CrossRef]
- Torchilin, V.P.; Lukyanov, A.N.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 2003, 100, 6039–6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598. [Google Scholar] [CrossRef]
- Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharmaceut. Res. 2010, 27, 2569–2589. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Jiang, K.; Zhang, X.; Chung, E.J. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng. Transl. Med. 2020, 5, e10173. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Xiao, Y.; Mao, A.; Lang, M. Phenylboronic acid conjugated mPEG-b-PCL micelles as DOX carriers for enhanced drug encapsulation and controlled drug release. Eur. Polym. J. 2022, 173, 111235. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Jiao, Z.; Yan, M.; Miao, P.; Wei, Z.; Leng, X.; Li, Y.; Fan, J.; Sun, W.; et al. Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett. 2022; in press. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Feng, Y.; Yao, Y.; Zhao, X. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery. Colloids Surfaces A Physicochem. Eng. Aspects 2022, 639, 128353. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Xu, X.; Chen, Z.; Ma, L.; Wang, Y.; Guo, X.; Li, J.; Wang, X. Construction of pH-sensitive targeted micelle system co-delivery with curcumin and dasatinib and evaluation of anti-liver cancer. Drug Deliv. 2022, 29, 792–806. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X.; Zhong, X.; Chang, J.; He, M.; Wang, H.; Li, Y.; Zhao, C.; Luo, Y.; Ran, L. MPEG-PCL nanomicelles platform for synergistic metformin and chrysin delivery to breast cancer in mice. Anti-Cancer Agents. Med. Chem. 2022, 22, 280–293. [Google Scholar] [CrossRef]
- Wang, S.; Tan, X.; Zhou, Q.; Geng, P.; Wang, J.; Zou, P.; Deng, A.; Hu, J. Co-delivery of doxorubicin and SIS3 by folate-targeted polymeric micelles for overcoming tumor multidrug resistance. Drug Deliv. Transl. Res. 2022, 12, 167–179. [Google Scholar] [CrossRef]
- Mazumder, A.; Anupma, D.; Wirat, A.; Rungnapha, S.; Witaya, S.; Norased, N. In vitro galactose-targeted study of RSPP050-loaded micelles against liver hepatocellular carcinoma. Pharm. Dev. Technol. 2022, 27, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Ansarinik, Z.; Kiyani, H.; Yoosefian, M. Investigation of self-assembled poly (ethylene glycol)-poly (L-lactic acid) micelle as potential drug delivery system for poorly water soluble anticancer drug abemaciclib. J. Mol. Liquids 2022, 365, 120192. [Google Scholar] [CrossRef]
- He, M.; Wang, R.; Wan, P.; Wang, H.; Cheng, Y.; Miao, P.; Wei, Z.; Leng, X.; Li, Y.; Du, J.; et al. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022, 23, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; She, L.; Xu, Z.Y.; Wang, Z.K.; Ma, Z.; Yang, F.; Li, Z.T. A BODIPY-modified polymeric micelle for sustaining enhanced photodynamic therapy. Chin. Chem. Lett. 2022, 33, 3277–3280. [Google Scholar] [CrossRef]
- Adeli, F.; Abbasi, F.; Babazadeh, M.; Davaran, S. Thermo/pH dual-responsive micelles based on the host–guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J. Nanobiotechnol. 2022, 20, 1–24. [Google Scholar] [CrossRef]
- Machado, M.G.C.; de Oliveira, M.A.; Lanna, E.G.; Siqueira, R.P.; Pound-Lana, G.; Branquinho, R.T.; Mosqueira, V.C.F. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed. Pharmacother. 2022, 145, 112464. [Google Scholar] [CrossRef]
- Feng, R.; Li, Z.; Fangfang, T.; Min, W.; Shiyu, C.; Zhimei, S.; Hongmei, L. Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surfaces B Biointerfaces 2022, 216, 112559. [Google Scholar] [CrossRef]
- Nagy, J.A.; Chang, S.-H.; Dvorak, A.M.; Dvorak, H.F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 2009, 100, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 Pt 1, 6387–6392. [Google Scholar]
- Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res. 1995, 55, 3752–3756. [Google Scholar]
- Yu, D.; Peng, P.; Dharap, S.S.; Wang, Y.; Mehlig, M.; Chandna, P.; Zhao, H.; Filpula, D.; Yang, K.; Borowski, V.; et al. Antitumor activity of poly (ethylene glycol)–camptothecin conjugate: The inhibition of tumor growth in vivo. J. Control. Release 2005, 110, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Kim, D.W.; Shim, Y.H.; Bang, J.S.; Oh, H.S.; Kim, S.W.; Seo, M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release 2001, 72, 191–202. [Google Scholar] [CrossRef]
- Hass, R.; von der Ohe, J.; Ungefroren, H. Impact of the tumor microenvironment on tumor heterogeneity and consequences for cancer cell plasticity and stemness. Cancers 2020, 12, 3716. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, U.; Hiroshi, M.; Rakesh, K.J.; Eva, M.S.-M.; William, Z.; Omid, C.F.; Simon, T.B.; Alberto, G.; Piotr, G.; David, C.B. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology; EPR Effect and Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013, 73, 2412–2417. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Yang, W.; Bai, L.; Wang, J.; Dou, K. Preparation and characterization of targeted DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab’)2 for treatment of hepatocellular carcinoma. J. Control. Release 2011, 152 (Suppl. 1), e14–e15. [Google Scholar] [CrossRef]
- Kamaly, N.; Zeyu, X.; Pedro, M.V.; Aleksandar, F.R.-M.; Omid, C.F. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971–3010. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, V.; Sharma, K.; Kumar, A.; Sharma, A.; Kazmi, I.; Al-Abbasi, F.A.; Alzarea, S.I.; Afzal, O.; Altamimi, A.S.A.; et al. A kNGR Peptide-Tethered Lipid–Polymer Hybrid Nanocarrier-Based Synergistic Approach for Effective Tumor Therapy: Development, Characterization, Ex-Vivo, and In-Vivo Assessment. Pharmaceutics 2022, 14, 1401. [Google Scholar] [CrossRef]
- Shreiber, D.I.; Bain, A.C.; Meaney, D.F. In vivo thresholds for mechanical injury to the blood-brain barrier. SAE Trans. 1997, 106, 3792–3806. [Google Scholar]
- Bailey, D.M.; Anthony, R.B.; Ryan, L.H.; Otto, F.B.; Ivan, D.; Christophe, H.; Sylvain, L.; Nicola, M.; Damir, J.; David, B.M.; et al. Hypoxemia increases blood-brain barrier permeability during extreme apnea in humans. J. Cereb. Blood Flow Metab. 2022, 42, 1120–1135. [Google Scholar] [CrossRef]
- Shepley, B.R.; Ainslie, P.N.; Hoiland, R.L.; Donnelly, J.; Sekhon, M.S.; Zetterberg, H.; Blennow, K.; Bain, A.R. Negligible influence of moderate to severe hyperthermia on blood-brain barrier permeability and neuronal parenchymal integrity in healthy men. J. Appl. Physiol. 2021, 130, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996, 97, 2517–2524. [Google Scholar] [CrossRef]
- Richard, N.L.L.; Avinash, G.; Riddhi, T.; Sanjay, A.; Jagdish, S. Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route. Biomedicines 2022, 19, 493. [Google Scholar] [CrossRef]
- Cheng, K.; Zhou, J.; Zhao, Y.; Chen, Y.; Ming, L.; Huang, D.; Yang, R.; Lin, Z.; Chen, D. pH-responsive and CD44-targeting polymer micelles based on CD44p-conjugated amphiphilic block copolymer PEG-b-HES-b-PLA for delivery of emodin to breast cancer cells. Nanotechnology 2022, 33, 275604. [Google Scholar] [CrossRef] [PubMed]
- Cobb, D.A.; de Ro, J.; Lixia, L.; Erin, A.; Daniel, W.L. Targeting of the alphav beta3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J. Immunother. Cancer 2022, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Ayama-Canden, S.; Tondo, R.; Piñeros, L.; Ninane, N.; Demazy, C.; Dieu, M.; Fattaccioli, A.; Tabarrant, T.; Lucas, S.; Bonifazi, D.; et al. IGDQ motogenic peptide gradient induces directional cell migration through integrin (αv) β3 activation in MDA-MB-231 metastatic breast cancer cells. Neoplasia 2022, 31, 100816. [Google Scholar] [CrossRef]
- López, M.F.; María, J.T.T.; Boris, L.A.; Oscar, C.A.; Enrique, C.V.; Héctor, C.M. SPARC induces E-cadherin repression and enhances cell migration through integrin v beta 3 and the transcription factor ZEB1 in prostate cancer cells. Int. J. Mol. Sci. 2022, 23, 5874. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, M.; He, J.; Liu, J.; Sun, X.; Ni, P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS Omega 2022, 7, 21325–21336. [Google Scholar] [CrossRef]
- Nazende, N.B.; Gizem, T.U.; Murat, T.; Yusuf, B.; Sevil, D.İ. HER2-Targeted, Degradable Core Cross-Linked Micelles for Specific and Dual pH-Sensitive DOX Release. Macromol. Biosci. 2022, 22, 2100375. [Google Scholar]
- Cao, H.; Yi, M.; Wei, H.; Zhang, S. Construction of Folate-Conjugated and pH-Responsive Cell Membrane Mimetic Mixed Micelles for Desirable DOX Release and Enhanced Tumor-Cellular Target. Langmuir 2022, 38, 9546–9555. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.C.; Collins, C.C.; Gout, P.W.; Wang, Y. Cancer-generated lactic acid: A regulatory, immunosuppressive metabolite? J. Pathol. 2013, 230, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.O.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release 2009, 138, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, H.; Tian, W.; Jiang, S.; Zhao, J.; Zhou, J.; He, Q.; Tang, Z.; Shen, W.; Wang, J. A dual drug delivery platform based on thermo-responsive polymeric micelle capped mesoporous silica nanoparticles for cancer therapy. Microporous Mesoporous Mater. 2022, 338, 111943. [Google Scholar] [CrossRef]
- Li, Y.; Tong, A.; Niu, P.; Guo, W.; Jin, Y.; Hu, Y.; Tao, P.; Miao, W. Light-Decomposable Polymeric Micelles with Hypoxia-Enhanced Phototherapeutic Efficacy for Combating Metastatic Breast Cancer. Pharmaceutics 2022, 14, 253. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Hu, Y.; Gao, H.; Ge, M.; Ding, J.; Wang, D. Hybrid Micelles Loaded with Chemotherapeutic drug-photothermal Agent Realizing Chemo-photothermal Synergistic Cancer Therapy. Eur. J. Pharm. Sci. 2022, 175, 106231. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, C.; Liu, J.; Huang, F.; Zhang, Y.; Liang, X.J.; Liu, J. ICG-Conjugated and 125 I-Labeled Polymeric Micelles with High Biosafety for Multimodality Imaging-Guided Photothermal Therapy of Tumors. Adv. Healthc. Mater. 2020, 9, e1901616. [Google Scholar] [CrossRef] [PubMed]
- Vilé, G.; Di Liberto, G.; Tosoni, S.; Sivo, A.; Ruta, V.; Nachtegaal, M.; Clark, A.H.; Agnoli, S.; Zou, Y.; Savateev, A.; et al. Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst. ACS Catal. 2022, 12, 2947–2958. [Google Scholar] [CrossRef]
- Finn, M.G.; Kolb, H.C.; Sharpless, K.B. Click chemistry connections for functional discovery. Nat. Synth. 2022, 1, 8–10. [Google Scholar] [CrossRef]
- Liu, L.; Ni, Y.; Mao, J.; Li, S.; Ng, K.H.; Chen, Z.; Huang, J.; Cai, W.; Lai, Y. Flexible and Highly Conductive Textiles Induced by Click Chemistry for Sensitive Motion and Humidity Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 37878–37886. [Google Scholar] [CrossRef]
- Chen, R.; Dong, Y.; Hong, F.; Zhang, X.; Wang, X.; Wang, J.; Chen, Y. Polydopamine nanoparticle-mediated, click chemistry triggered, microparticle-counting immunosensor for the sensitive detection of ochratoxin A. J. Hazard. Mater. 2022, 428, 128206. [Google Scholar] [CrossRef]
- Song, N.; Ding, M.; Pan, Z.; Li, J.; Zhou, L.; Tan, H.; Fu, Q. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery. Biomacromolecules 2013, 14, 4407–4419. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, D.; Sun, M.; Shu, G.; Qi, J.; You, Y.; Xu, Y.; Fan, K.; Xu, X.; Jin, F.; et al. Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment. Nano Res. 2022, 15, 2288–2299. [Google Scholar] [CrossRef]
- Sonia, L.; Julián, R.-L.; Teresa García, M.; Juan, F.R.; José, M.P.-O.; María, J.R.; Ignacio, G. Self-assembled coumarin-and 5-fluorouracil-PEG micelles as multifunctional drug delivery systems. J. Drug Deliv. Sci. Technol. 2022, 74, 103582. [Google Scholar]
- Hisako, I.; Naruhiro, H.; Akihiro, T.; Naoki, A.; Takanori, K. Multifunctional peptide carrier-modified polymer micelle accelerates oral siRNA-delivery to the colon and improves gene silencing-mediated therapeutic effects in ulcerative colitis. J. Drug Deliv. Sci. Technol. 2022, 73, 103481. [Google Scholar]
- Ameli, H.; Nina, A. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv. 2022, 12, 4681–4691. [Google Scholar] [CrossRef]
- Miranda, M.S.; Ana, F.A.; Manuela, E.G.; Márcia, T.R. Magnetic Micellar Nanovehicles: Prospects of Multifunctional Hybrid Systems for Precision Theranostics. Int. J. Mol. Sci. 2022, 23, 11793. [Google Scholar] [CrossRef]
- Cheng, H.; Fan, X.; Ye, E.; Chen, H.; Yang, J.; Ke, L.; You, M.; Liu, M.; Zhang, Y.W.; Wu, Y.L.; et al. Dual Tumor Microenvironment Remodeling by Glucose-Contained Radical Copolymer for MRI-Guided Photoimmunotherapy. Adv. Mater. 2022, 34, 2107674. [Google Scholar] [CrossRef]
- Nishiyama, N.; Okazaki, S.; Cabral, H.; Miyamoto, M.; Kato, Y.; Sugiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003, 63, 8977–8983. [Google Scholar]
- Uchino, H.; Matsumura, Y.; Negishi, T.; Koizumi, F.; Hayashi, T.; Honda, T.; Nishiyama, N.; Kataoka, K.; Naito, S.; Kakizoe, T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer 2005, 93, 678–687. [Google Scholar] [CrossRef]
Polymer Backbone | Physicochemical Characteristics | Chemical Interactions | Applications | Ref. |
---|---|---|---|---|
Phenyl boronic acid conjugated mPEG-b-PCL | 100 nm, spherical in shape | Hydrophobic, electrostatic and pendant interactions | micelles as DOX carriers for enhanced drug encapsulation and controlled drug release | [26] |
Redox-responsive diblock copolymers (mPEG-SS-PMLA) of poly(ethylene glycol) and phenyl-functionalized poly(lactic acid) with disulfide bond as the linker are synthesized to prepare PLA-based micelles | 131.0 nm, spherical particles | π-π interactions between Ru complex and polymer micelles | PDT against 4T1 tumor model by Ru-containing polylactide MPEG-SS-PMLA@Ru micelles | [27] |
Imidazole-bearing block polymer | 200 nm, spherical particles | Hydrogen bonding with DOX | DOX delivery to human ovarian adenocarcinoma | [28] |
Hyaluronic acid (HA)-conjugated curcumin (Cur) and d-α-tocopherol acid polyethylene glycol succinate (TPGS) | 66 nm, spherical particles | Possible hydrogen bonding, but there was no evidence justified | selective drug-carrying vehicles to deliver dasatinib (DAS) to HePG2 tumors | [29] |
mPEG-PCL | ~50 nm | Possible hydrogen bonding, but there was no evidence provided | metformin and Chrysin Delivery to Breast Cancer in Mice with improved efficacy | [30] |
FA-PEG-PLGA | ~80 nm | It could be hydrogen bonding interactions for the loading of two drugs | MCF-7/ADR xenograft tumor inhibition by the co-delivery of DOX and SIS3 | [31] |
PLA-PEG/SPIONS | -NA | Physical or hydrogen bonding could make such formulations | For delivery of galactose-targeted 19-O-triphenylmethylandrographolide (RSPP050) to HepG2 cells | [32] |
PLA-PEG | NA | The process of drug encapsulation is mostly operated by the hydrophobic and hydrophilic interactions. | To improve the solubility of anticancer drug abemaciclib | [33] |
Ru-containing polymer (poly(DCARu)) with two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate | 6–8 nm (TEM) and hydrodynamic size 22 nm | Metal-polymer complexation | Effective PDT against 4T1 tumor model | [34] |
PEG-b-PAsp-BODIPY | 110 nm, spherical shaped one | Covalent bonding | Effective PDT on C57BL/6J tumors in vivo | [35] |
benzimidazole-terminated PHEMA-g-(PCL-BM) and β-CD-star-PMAA-b-PNIPAM | 80 nm spherical particles | DOX was physically loaded during self-assembly | Dual responsive (pH and thermo) system for DOX release in to MCF-7 cells | [36] |
PEG-PLA-IR-780 | ~118 nm | Physical encapsulation of IR-780 | PDT on MCF-7 and MDA-MB-231 cell lines | [37] |
PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) | ~ 130 nm | Physical interactions | For improved targeted DOX delivery and was demonstrated on HepG2 tumor model | [38] |
No | Title | Status | Study Results | Conditions | Interventions | Locations | Clinical Trial No |
---|---|---|---|---|---|---|---|
1 | A Study of Docetaxel Polymeric Micelles for Injection in Patients With Advanced Solid Tumors | Not yet recruiting | No Results Available | Advanced Solid Tumors | Drug: Docetaxel Polymeric Micelles for Injection | The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China|The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China|Henan Cancer Hospital, Zhengzhou, Henan, China|The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China|Hunan Cancer Hospital, Changsha, Hunan, China|Jiangxi Cancer Hospital, Nanchang, Jiangxi, China|Shandong Cancer Hospital, Jinan, Shandong, China|Shanghai East Hospital, Shanghai, Shanghai, China|Tianjin Medical University Cancer Institute&Hospital, Tianjin, Tianjin, China|Jinhua Municipal Hospital Medical Group, Jinhua, Zhejiang, China | NCT05254665 |
2 | A Study to Evaluate ONM-100, an Intraoperative Fluorescence Imaging Agent for the Detection of Cancer | Completed | No Results Available | Breast Cancer|Head and Neck Squamous Cell Carcinoma|Colorectal Cancer|Prostate Cancer|Ovarian Cancer|Urothelial Carcinoma|Non-small Cell Lung Cancer | Drug: ONM-100 | The University of Pennsylvania, Philadelphia, Pennsylvania, United States|The University of Texas Southwestern Medical Center, Dallas, Texas, United States|The University of Texas—M.D. Anderson Cancer Center, Houston, Texas, United States | NCT03735680 |
3 | A Clinical Trial of Paclitaxel Loaded Polymeric Micelle in Patients With Taxane-Pretreated Recurrent Breast Cancer | Unknown status | No Results Available | Recurrent Breast Cancer | Drug: Paclitaxel loaded Polymeric micelle | Department of surgery, The Catholoic university of Korea, St. Mary’s hospital., Seoul, Korea, Republic of | NCT00912639 |
4 | A Trial of Paclitaxel (Genexol®) and Cisplatin Versus Paclitaxel Loaded Polymeric Micelle (Genexol-PM®) and Cisplatin in Advanced Non Small Cell Lung Cancer | Completed | No Results Available | Non-Small Cell Lung Cancer | Drug: Paclitaxel (Genexol®)|Drug: Paclitaxel loaded polymeric micelle (Genexol-PM®) | Chungnam National University Hospital, Daejeon, Jung-gu, Korea, Republic of | NCT01023347 |
5 | Paclitaxel-Loaded Polymeric Micelle and Carboplatin as First-Line Therapy in Treating Patients With Advanced Ovarian Cancer | Unknown status | No Results Available | Ovarian Cancer | Drug: carboplatin|Drug: paclitaxel-loaded polymeric micelle | Seoul National University Hospital, Seoul, Korea, Republic of|Yonsei Cancer Center at Yonsei University Medical Center, Seoul, Korea, Republic of|Samsung Medical Center, Seoul, Korea, Republic of|Asan Medical Center—University of Ulsan College of Medicine, Seoul, Korea, Republic of | NCT00886717 |
6 | Docetaxel-polymeric Micelles(PM) and Oxaliplatin for Esophageal Carcinoma | Unknown status | No Results Available | Esophagus Squamous Cell Carcinoma (SCC)|Metastatic Cancer | Drug: Docetaxel-PM|Drug: Oxaliplatin | Dong-A University Hospital, Busan, Korea, Republic of | NCT03585673 |
7 | Study of Genexol-PM in Patients With Advanced Urothelial Cancer Previously Treated With Gemcitabine and Platinum | Completed | No Results Available | Bladder Cancer|Ureter Cancer | Drug: Genexol PM | Asan Medical Center, Seoul, Korea, Republic of | NCT01426126 |
8 | Clinical Investigation of the MiStent Drug Eluting Stent (DES) in Coronary Artery Disease | Completed | Has Results | Coronary Artery Disease | Device: MiStent DES|Device: Endeavor DES | Cardiovascular Center, Aalst, Belgium|Antwerp Hospital, ZNA Middelheim, Antwerp, Belgium|Brussels University Hospital, Brussels, Belgium|Ziekenhuis Oost-Limburg, Genk, Belgium|Virga Jesse Ziekenhuis, Hasselt, Belgium|KUL Cardiology Gasthuisberg, Leuven, Belgium|Jacques Cartier Hospital, Massy, France|Claude Galien Hospital, Quincy, France|Clinique Pasteur, Toulouse, France|OLV, Amsterdam, Netherlands|St. Antonius Ziekenhuis, Nieuwegein, Netherlands|TweeSteden Ziekenhuis, Tilburg, Netherlands|UMC Utrecht, Utrecht, Netherlands|Hospital Weezenlanden, Zwolle, Netherlands|Auckland City Hospital, Auckland, New Zealand|Mercy Angiography Unit, Auckland, New Zealand|Christchurch Hospital, Christchurch, New Zealand|Dunedin Hospital, Dunedin, New Zealand|Wellington Hospital, Wellington, New Zealand|Sahlgrenska University Hospital, Goteborg, Sweden|Orebro University Hospital, Orebro, Sweden|Royal Sussex Hosp, Brighton, United Kingdom|Papworth Hospital, Cambridge, United Kingdom|Guy’s & St. Thomas’, London, United Kingdom|Royal Brompton, London, United Kingdom|University Hospital South Manchester, Manchester, United Kingdom|Norfolk/Norwich UHosp, Norwich, United Kingdom|Southampton UHT, Southampton, United Kingdom | NCT01294748 |
9 | First-In-Human Trial of the MiStent Drug-Eluting Stent (DES) in Coronary Artery Disease | Completed | Has Results | Coronary Artery Disease | Device: MiStent SES | St. Vincent’s Hospital Melbourne, Melbourne, Australia|Onze-Lieve-Vrouwziekenhuis Aalst (OLV Hospital), Aalst, Belgium|Ziekenhuis Oost-Limburg, Genk, Belgium|Auckland City Hospital, Auckland, New Zealand|Mercy Angiography Unit—Mercy Hospital, Aukland, New Zealand | NCT01247428 |
10 | Study to Evaluate the Efficacy and Safety of Docetaxel Polymeric Micelle (PM) in Recurrent or Metastatic HNSCC | Unknown status | No Results Available | Head and Neck Squamous Cell Carcinoma | Drug: Docetaxel-PM | Samyang Biopharmaceuticals, Seoul, Korea, Republic of | NCT02639858 |
11 | Paclitaxel in Treating Patients with Unresectable Locally Advanced or Metastatic Pancreatic Cancer | Completed | No Results Available | Pancreatic Cancer | Drug: paclitaxel-loaded polymeric micelle | Florida Cancer Specialists—Bonita Springs, Bonita Springs, Florida, United States|Midwest Cancer Research Group, Incorporated, Skokie, Illinois, United States|Louisiana Oncology Associates—Lafayette, Lafayette, Louisiana, United States|St. Vincent’s Comprehensive Cancer Center—Manhattan, New York, New York, United States|Southwest Regional Cancer Center—Central, Austin, Texas, United States | NCT00111904 |
12 | Trial of MiStent Compared to Xience in Japan | Unknown status | No Results Available | Coronary (Artery); Disease | Device: MiStent (MT005) Coronary Artery Stent|Device: Xience Coronary Artery Stent | Iwaki Municipal Iwaki Kyoritsu Hospital, Iwaki-shi, Fukushima, Japan|Kansai Rosai Hospital, Amagasaki-shi, Hyogo, Japan|Tenyokai Central Hospital, Kagoshima-shi, Kagoshima, Japan|Kanto Rosai Hospital, Kawasaki-shi, Kanagawa, Japan|Sinkoga Hospital, Kurume-shi, Kurume-shi, Fukuoka, Japan|Omihachiman Community Medical Center, Omihachiman-shi, Shiga, Japan|Toho Univ.Ohashi Medical Center, Meguro-ku, Tokyo, Japan|Cardiovascular Institute Hospital, Minato-ku, Tokyo, Japan|Saiseikai Yokohama Tobu Hospital, Kanagawa, Yokohama, Japan|Shonan Kamakura General Hospital, Tokyo, Japan | NCT02972671 |
13 | A Phase II Study of Weekly Genexol-PM in Patients with Hepatocelluar Carcinoma After Failure of Sorafenib | Terminated | No Results Available | Carcinoma, Hepatocellular | Drug: Genexol-PM | Gachon University Gil Medical Center, Incheon, Korea, Republic of|Samsung Medical Center, Seoul, Korea, Republic of | NCT03008512 |
14 | A Phase II Trial of Genexol-PM and Gemcitabine in Patients with Advanced Non-small-cell Lung Cancer | Completed | No Results Available | Non-small Cell Lung Cancer | Drug: Genexol-PM/Gemcitabine | Gachon University Gil Medical Center, Incheon, Korea, Republic of | NCT01770795 |
15 | Study Comparing the MiStent SES Versus the XIENCE EES Stent | Active, not recruiting | No Results Available | Coronary Stenosis | Device: MiStent|Device: XIENCE EES | Research Center Corbeil, Corbeil, France|Research Center Nimes, Nimes, France|Research Center Poitiers, Poitiers, France|Research Center Jena, Jena, Germany|Research Center Leipzig, Leipzig, Germany|Research Center Munster, Munster, Germany|Research Center Ulm, Ulm, Germany|Research Center Wiesbaden, Wiesbaden, Germany|Research Center Amersfoort, Amersfoort, Netherlands|Research Center Amsterdam, Amsterdam, Netherlands|Tergooi, Blaricum, Netherlands|Research Center Emmen, Emmen, Netherlands|Research Center Leeuwarden, Leeuwarden, Netherlands|Research Center Nijmegen, Nijmegen, Netherlands|Research Center Venlo, Venlo, Netherlands|Research Center Belchatow, Belchatow, Poland|Research Center Bielsko-Biala, Bielsko-Biala, Poland|Research center Chrzanow, Chrzanow, Poland|Research Center Tychy, Tychy, Poland|Research Center Zgierz, Zgierz, Poland | NCT02385279 |
16 | Study of NC-6004 in Combination With 5-FU and Cetuximab in Patients with Head and Neck Cancer | Terminated | No Results Available | Head and Neck Neoplasms | Drug: NC-6004|Drug: Cetuximab|Drug: 5-FU | National Taiwan University Hospital, Taipei, Taiwan|Taipei Veterans General Hospital, Taipei, Taiwan|Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan | NCT02817113 |
17 | Clinical Trial on the Efficacy and Safety of Sirolimus-Eluting Stent (MiStent® System) | Unknown status | No Results Available | Coronary Heart Disease | Device: MiStent|Device: TIVOLI | The Third Xiangya Hospital of Central South University, Changsha, Hunan, China|The First Affiliated Hospital of Baotou University, Baotou, Inner Mongolia, China|Inner Mongolia People’S Hospital, Hohhot, Inner Mongolia, China|The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China|The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China|The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, Shaanxi, China|Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China|The General Hospital of Shenyang Military Region, Area Of Shenyang, China|Fu Wai Hospital, National Center for Cardiovascular Disease, Beijing, China|The First Hospital of Jilin University, Changchun, China|The Second Xiangya Hospital of Central South University, Changsha, China|The First Hospital of Lanzhou University, Lanzhou, China|Shanghai Ninth People’s Hospital, Shanghai, China|West China Hospital, Sichuan University, Sichuan, China|The Second Hospital of Shanxi Medical University, Taiyuan, China|TEDA International Cardiovascular Hospital, Tianjin, China | NCT02448524 |
18 | Study to Evaluate the Efficacy and Safety of Genexol-PM Once a Week for Gynecologic Cancer | Unknown status | No Results Available | Gynecologic Cancer | Drug: Genexol-PM | Samyang Biopharmaceuticals, Seoul, Korea, Republic of | NCT02739529 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, G.-W.; Rejinold, N.S.; Choy, J.-H. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers 2022, 14, 4839. https://doi.org/10.3390/polym14224839
Jin G-W, Rejinold NS, Choy J-H. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers. 2022; 14(22):4839. https://doi.org/10.3390/polym14224839
Chicago/Turabian StyleJin, Geun-Woo, N. Sanoj Rejinold, and Jin-Ho Choy. 2022. "Multifunctional Polymeric Micelles for Cancer Therapy" Polymers 14, no. 22: 4839. https://doi.org/10.3390/polym14224839
APA StyleJin, G. -W., Rejinold, N. S., & Choy, J. -H. (2022). Multifunctional Polymeric Micelles for Cancer Therapy. Polymers, 14(22), 4839. https://doi.org/10.3390/polym14224839