Relaxation and Amorphous Structure of Polymers Containing Rigid Fumarate Segments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Differential Scanning Calorimetry (DSC)
2.3. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.4. Size Exclusion Chromatography (SEC)
2.5. Dynamic Mechanical Analysis (DMA)
2.6. Tensile Test
2.7. Wide-Angle X-ray Scattering
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ediger, M.D.; Angell, C.A.; Nagel, S.R. Supercooled Liquids and Glasses. J. Phys. Chem. 1996, 100, 13200–13212. [Google Scholar] [CrossRef]
- Angell, C.A. The Glass Transition. Curr. Opin. Solid State Mater. Sci. 1996, 1, 578–585. [Google Scholar] [CrossRef]
- Soles, C.L.; Burns, A.B.; Ito, K.; Chan, E.; Liu, J.; Yee, A.F.; Tyagi, M.S. Importance of Sub-Nanosecond Fluctuations on the Toughness of Polycarbonate Glasses. Macromolecules 2020, 53, 6672–6681. [Google Scholar] [CrossRef]
- Soles, C.L.; Burns, A.B.; Ito, K.; Chan, E.P.; Douglas, J.F.; Wu, J.; Yee, A.F.; Shih, Y.T.; Huang, L.; Dimeo, R.M.; et al. Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses. Macromolecules 2021, 54, 2518–2528. [Google Scholar] [CrossRef]
- McCrum, N.G.; Read, B.E.; Williams, G. Anelastic and Dielectric Effects in Polymeric Solids; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hempel, E.; Hempel, G.; Hensel, A.; Schick, C.; Donth, E. Characteristic Length of Dynamic Glass Transition near Tg for a Wide Assortment of Glass-Forming Substances. J. Phys. Chem. B 2000, 104, 2460–2466. [Google Scholar] [CrossRef]
- Sargsyan, A.; Tonoyan, A.; Davtyan, S.; Schick, C. The Amount of Immobilized Polymer in PMMA SiO2 Nanocomposites Determined from Calorimetric Data. Eur. Polym. J. 2007, 43, 3113–3127. [Google Scholar] [CrossRef]
- Stoclet, G.; Seguela, R.; Lefebvre, J.M.; Rochas, C. New Insights on the Strain-Induced Mesophase of Poly (d, l-Lactide): In Situ WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules 2010, 43, 7228–7237. [Google Scholar] [CrossRef]
- Fujimori, H.; Oguni, M. Calorimetric Study of D, L-Propene Carbonate: Observation of the β- as Well as α-Glass Transition in the Supercooled Liquid. J. Chem. Thermodyn. 1994, 26, 367–378. [Google Scholar] [CrossRef]
- Hikima, T.; Hanaya, M.; Oguni, M. B-Molecular Rearrangement Process, But Not an a-Process, as Governing the Homogeneous Crystal-Nucleation Rate in a Supercooled Liquid. Bull. Chem. Soc. Jpn. 1996, 69, 1863–1868. [Google Scholar] [CrossRef]
- Samuel, C.; Raquez, J.M.; Dubois, P. PLLA/PMMA Blends: A Shear-Induced Miscibility with Tunable Morphologies and Properties? Polymer 2013, 54, 3931–3939. [Google Scholar] [CrossRef]
- Beiner, M.; Schröter, K.; Hempel, E.; Reissig, S.; Donth, E. Multiple Glass Transition and Nanophase Separation in Poly (Ra-Alkyl Methacrylate) Homopolymers. Macromolecules 1999, 32, 6278–6282. [Google Scholar] [CrossRef]
- Beiner, M.; Huth, H. Nanophase Separation and Hindered Glass Transition in Side-Chain Polymers. Nat. Mater. 2003, 2, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Pipertzis, A.; Hess, A.; Weis, P.; Papamokos, G.; Koynov, K.; Wu, S.; Floudas, G. Multiple Segmental Processes in Polymers with Cis and Trans Stereoregular Configurations. ACS Macro Lett. 2018, 7, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Johari, G.P.; Goldstein, M. Molecular Mobility in Simple Glasses. J. Phys. Chem. 1970, 74, 2034–2035. [Google Scholar] [CrossRef]
- Ngai, K.L.; Paluch, M. Classification of Secondary Relaxation in Glass-Formers Based on Dynamic Properties. J. Chem. Phys. 2004, 120, 857–873. [Google Scholar] [CrossRef] [PubMed]
- Capaccioli, S.; Paluch, M.; Prevosto, D.; Wang, L.M.; Ngai, K.L. Many-Body Nature of Relaxation Processes in Glass-Forming Systems. J. Phys. Chem. Lett. 2012, 3, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.B.; Takahara, A.; Amaya, N.; Murata, Y.; Kajiyama, T. Effects of Ester Side Chain Structure on Gas Permeatio Behavior of Poly (Dialkylfumarate) S. Polym. J. 1989, 21, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Ngai, K.L.; Capaccioli, S.; Ancherbak, S.; Shinyashiki, N. Resolving the Ambiguity of the Dynamics of Water and Clarifying Its Role in Hydrated Proteins. Philos. Mag. 2011, 91, 1809–1835. [Google Scholar] [CrossRef]
- Cicerone, M.T.; Douglas, J.F. β-Relaxation Governs Protein Stability in Sugar-Glass Matrices. Soft Matter 2012, 8, 2983–2991. [Google Scholar] [CrossRef]
- Xiao, C.; Jho, J.Y.; Yee, A.F. Correlation between the Shear Yielding Behavior and Secondary Relaxations of Bisphenol A Polycarbonate and Related Copolymers. Macromolecules 1994, 27, 2761–2768. [Google Scholar] [CrossRef]
- Liu, Y.; Donovan, J.A. The Effect of the Secondary Relaxations on the Fracture Toughness of Nylon 6/Amorphous Nylon 6IcoT Blends. Polym. Eng. Sci. 1996, 36, 2345–2351. [Google Scholar] [CrossRef]
- Yu, H.B.; Wang, W.H.; Bai, H.Y.; Wu, Y.; Chen, M.W. Relating Activation of Shear Transformation Zones to β Relaxations in Metallic Glasses. Phys. Rev. B 2010, 81, 220201. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.B.; Shen, X.; Wang, Z.; Gu, L.; Wang, W.H.; Bai, H.Y. Tensile Plasticity in Metallic Glasses with Pronounced β Relaxations. Phys. Rev. Lett. 2012, 108, 015504. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Tylinski, M.; Guiseppi-Elie, A.; Ediger, M.D.; Richert, R. Suppression of β Relaxation in Vapor-Deposited Ultrastable Glasses. Phys. Rev. Lett. 2015, 115, 185501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Tsuji, N.; Miyata, K.; Kano, T.; Fukao, K.; Matsumoto, A. Characteristic Features of α and β Relaxations of Poly (Diethyl Fumarate) as the Poly (Substituted Methylene). Macromol. Chem. Phys. 2021, 222, 2100124. [Google Scholar] [CrossRef]
- Suzuki, Y.; Tsujimura, T.; Funamoto, K.; Matsumoto, A. Relaxation Behavior of Random Copolymers Containing Rigid Fumarate and Flexible Acrylate Segments by Dynamic Mechanical Analysis. Polym. J. 2019, 51, 1163–1172. [Google Scholar] [CrossRef]
- Suzuki, Y.; Miyata, K.; Sato, M.; Tsuji, N.; Fukao, K.; Matsumoto, A. Relaxation Behavior of Poly (Diisopropyl Fumarate) Including No Methylene Spacer in the Main Chain. Polymer 2020, 196, 122479. [Google Scholar] [CrossRef]
- Toyoda, N.; Otsu, T. Polymers from 1,2-Disubstituted Ethylenic Monomers. IX. Radical High Polymerization of Methyl-Tert-Butyl Fumarate. J. Macromol. Sci. Part A Chem. 1983, 19, 1011–1021. [Google Scholar] [CrossRef]
- Matsumoto, A.; Tarui, T.; Otsu, T. Dilute Solution Properties of Semiflexible Poly (Substituted Methylenes): Intrinsic Viscosity of Poly (Diisopropyl Fumarate) in Benzene. Macromolecules 1990, 23, 5102–5105. [Google Scholar] [CrossRef]
- Matsumoto, A.; Otsu, T. Detailed Mechanism of Radical High Polymerization of Sterically Hindered Dialkyl Fumarates. Macromol. Symp. 1995, 98, 139–152. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sano, Y.; Yoshioka, M.; Otsu, T. Kinetic Study of Radical Polymerization of Dialkyl Fumarates Using Electron Spin Resonance Spectroscopy. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 291–299. [Google Scholar] [CrossRef]
- Yamada, K.; Takayanagi, M.; Murata, Y. Relations between Molecular Aggregation State and Mechanical Properties in Poly (Diisopropyl Fumarate). Polymer 1986, 27, 1054–1057. [Google Scholar] [CrossRef]
- Cahoon, C.R.; Bielawski, C.W. Metal-Promoted C1 Polymerizations. Coord. Chem. Rev. 2018, 374, 261–278. [Google Scholar] [CrossRef]
- Ihara, E.; Haida, N.; Iio, M.; Inoue, K. Palladium-Mediated Polymerization of Alkyl Diazoacetates to Afford Poly (Alkoxycarbonylmethylene)s. First Synthesis of Polymethylenes Bearing Polar Substituents. Macromolecules 2003, 36, 36–41. [Google Scholar] [CrossRef]
- Ihara, E.; Fujioka, M.; Haida, N.; Itoh, T.; Inoue, K. First Synthesis of Poly (Acylmethylene)s via Palladium-Mediated Polymerization of Diazoketones. Macromolecules 2005, 38, 2101–2108. [Google Scholar] [CrossRef]
- Ihara, E.; Hiraren, T.; Itoh, T.; Inoue, K. Palladium-Mediated Polymerization of Diazoacetamides. Polym. J. 2008, 40, 1094–1098. [Google Scholar] [CrossRef] [Green Version]
- Shimomoto, H.; Hohsaki, R.; Hiramatsu, D.; Itoh, T.; Ihara, E. Pd-Initiated Polymerization of Dendron-Containing Diazoacetates to Afford Dendronized Poly (Substituted Methylene)s with Narrow Molecular Weight Distribution and Its Application to Synthesis of PH-Responsive Dendronized Polymers. Macromolecules 2020, 53, 6369–6379. [Google Scholar] [CrossRef]
- Tsuji, N.; Suzuki, Y.; Matsumoto, A. Adamantane-Containing Poly (Dialkyl Fumarate)s with Rigid Chain Structures. Polym. J. 2019, 51, 1147–1161. [Google Scholar] [CrossRef]
- Miyata, K.; Yoshioka, J.; Fukao, K.; Suzuki, Y.; Matsumoto, A. Dielectric Relaxation and Glassy Dynamics in Poly (Diisopropyl Fumarate) and Its Copolymers with Acrylate Segments. Polymer 2022, 245, 124671. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Kulik, A.S.; Beckham, H.W.; Ohlemacher, A.; Pawelzik, U.; Boffel, C.; Spiess, H.W. Molecular Nature of β Relaxation in Poly (Methyl methacrylate) Investigated by Multidimensional NMR. Macromolecules 1994, 27, 4733–4745. [Google Scholar] [CrossRef]
- Kulik, A.S.; Beckham, H.W.; Schmidt-Rohr, K.; Radloff, D.; Pawelzik, U.; Boeffel, C.; Spiess, H.W. Coupling of α and β Processes in Poly (Ethyl Methacrylate) Investigated by Multidimensional NMR. Macromolecules 1994, 27, 4746–4754. [Google Scholar] [CrossRef]
- Torchia, D.A. The Measurement of Proton-Enhanced Carbon-13 T1 Values by a Method Which Suppresses Artifacts. J. Magn. Reson. 1978, 30, 613–616. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Kurosu, H.; Yamada, T.; Ando, I.; Sato, K.; Otsu, T. An NMR Study of Structure and Dynamics of Poly(Fumarate)s in the Solid State. J. Mol. Struct. 1993, 300, 303–311. [Google Scholar] [CrossRef]
- Kurosu, H.; Suzuki, K.; Ando, I.; Otsu, T. An NMR Study of Structure and Dynamics of Poly(Fumarate)s in the Solid State (II). J. Mol. Struct. 1994, 321, 229–237. [Google Scholar] [CrossRef]
- Schenk, W.; Reichert, D.; Schneider, H. Compatibility in Polymer Blends of Poly(Vinyl Acetate) and Poly(Methyl Methacrylate) Studied by Nuclear Magnetic Relaxation. Polymer 1990, 31, 329–335. [Google Scholar] [CrossRef]
- Heatley, F.; Begum, A. Molecular Motion of Poly(Methyl Methacrylate), Polystyrene and Poly(Propylene Oxide) in Solution Studied by 13C n.m.r. Spin-Lattice Relaxation Measurements: Effects Due to Distributions of Correlation Times. Polymer 1976, 17, 399–408. [Google Scholar] [CrossRef]
- Lovell, R.; Mitchell, G.R.; Windle, A.H. Wide-Angle X-Ray Scattering Study of Structural Parameters in Non-Crystalline Polymers. Faraday Discuss. Chem. Soc. 1979, 68, 46–57. [Google Scholar] [CrossRef]
- Lovell, R.; Windle, A.H. Determination of the Local Conformation of PMMA from Wide-Angle X-Ray Scattering. Polymer 1981, 22, 175–184. [Google Scholar] [CrossRef]
- Mitchell, G.R.; Windle, A.H. Structure of Polystyrene Glasses. Polymer 1984, 25, 906–920. [Google Scholar] [CrossRef]
Feed (mol%) DEF/EA | Actual (mol%) a DEF/EA | Mn | Mw | Mw/Mn |
---|---|---|---|---|
100/0 | 100/0 | 13,000 | 24,000 | 1.9 |
90/10 | 88/12 | 12,000 | 24,000 | 2.0 |
80/20 | 80/20 | 13,000 | 28,000 | 2.2 |
60/40 | 67/33 | 17,000 | 46,000 | 2.7 |
30/70 | 37/63 | 17,000 | 39,000 | 2.3 |
β Relaxation Temperature (°C) | α Relaxation Temperature (°C) | Ref. | |
---|---|---|---|
PDEF | 27 | 107 | [27] |
PDiPF | 67 | 137 | [29] |
PMMA | - | 120 | [45] |
P(DEF-co-EA)90/10 | 15 | 101 | This study |
P(DEF-co-EA)80/20 | 5 | 95 | This study |
P(DEF-co-EA)60/40 | 0 | 75 | This study |
P(DEF-co-EA)30/70 | −12 | 60 | This study |
PEA | - | −23 | [45] |
Temperature (°C) | Modulus (MPa) | Ultimate Tensile Strength (MPa) |
---|---|---|
50 | 410 | 0.43 |
70 | 110 | 0.36 |
80 | 68 | 0.12 |
90 | 14 | 0.065 |
100 | 18 | 0.065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y.; Kano, T.; Tomii, T.; Tsuji, N.; Matsumoto, A. Relaxation and Amorphous Structure of Polymers Containing Rigid Fumarate Segments. Polymers 2022, 14, 4876. https://doi.org/10.3390/polym14224876
Suzuki Y, Kano T, Tomii T, Tsuji N, Matsumoto A. Relaxation and Amorphous Structure of Polymers Containing Rigid Fumarate Segments. Polymers. 2022; 14(22):4876. https://doi.org/10.3390/polym14224876
Chicago/Turabian StyleSuzuki, Yasuhito, Takahito Kano, Tsuyoshi Tomii, Nagisa Tsuji, and Akikazu Matsumoto. 2022. "Relaxation and Amorphous Structure of Polymers Containing Rigid Fumarate Segments" Polymers 14, no. 22: 4876. https://doi.org/10.3390/polym14224876
APA StyleSuzuki, Y., Kano, T., Tomii, T., Tsuji, N., & Matsumoto, A. (2022). Relaxation and Amorphous Structure of Polymers Containing Rigid Fumarate Segments. Polymers, 14(22), 4876. https://doi.org/10.3390/polym14224876