Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Biopolymers from Okra Plant Wastes
2.2.1. Okra Leaf Polysaccharides (OLP)
2.2.2. Synthesis of CMC from Okra Stalk
2.3. Preparation of Composite OLP/CMC Films
2.4. Rheological Measurement of Film-Forming Solutions
2.5. Characterization of OLP/CMC Composite Films
2.5.1. FTIR Structural Characteristics
2.5.2. Thickness, Color Properties, and Transmittance
2.5.3. Moisture Content Water Solubility and Contact Angle
2.5.4. Oxygen and Water Barrier Properties
2.5.5. Mechanical Properties
2.5.6. Thermal Stability Analysis
2.5.7. Antioxidant Activity
2.6. Packaging Application of OLP/CMC as a Coating for Cherry Tomatoe Preservation
2.6.1. Coating and Storage of Tomatoes
2.6.2. Quality Assessments during Storage
2.6.3. Visual Quality
2.7. Statistical Analysis
3. Results
3.1. Rheological Properties of Film-Forming Solutions
3.2. FT-IR Structural Characteristics of Films
3.3. Color and Light Barrier Properties of Films
3.4. Thickness and Mechanical Properties of Films
3.5. Water Sensitivity
3.6. OP and WVP of Films
3.7. Thermal Properties of Films
3.8. Antioxidant Activity of Films
3.9. Application of OLP/CMC for Cherry Tomatoe Preservation
3.9.1. Changes in Weight, Firmness, and Color
3.9.2. Visual Appearance and Quality Score
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, B.G.; Koontz, J.L.; Goddard, J.M. Hurdles to commercial translation of next generation active food packaging technologies. Curr. Opin. Food Sci. 2017, 16, 40. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Krochta, J.M. Edible packaging materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415. [Google Scholar] [CrossRef] [PubMed]
- Boz, Z.; Korhonen, V.; Koelsch Sand, C. Consumer considerations for the implementation of sustainable packaging: A review. Sustainability 2020, 12, 2192. [Google Scholar]
- Panahirad, S.; Dadpour, M.; Peighambardoust, S.H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J.M. Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci. Technol. 2021, 110, 663. [Google Scholar]
- Olawuyi, I.F.; Kim, S.R.; Lee, W.Y. Application of plant mucilage polysaccharides and their techno-functional properties’ modification for fresh produce preservation. Carbohydr. Polym. 2021, 272, 118371. [Google Scholar] [PubMed]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, U.; Bhinchhar, B.K.; Paswan, V.K.; Kharkwal, S.; Yadav, S.P.; Singh, P. Utilization of Agro-Industrial Wastes as Edible Coating and Films for Food Packaging Materials; IntechOpen: London, UK.
- Dhall, R. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Kamkar, A.; Misaghi, A. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr. Polym. 2018, 181, 351. [Google Scholar]
- Oun, A.A.; Rhim, J.-W. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr. Polym. 2016, 150, 187. [Google Scholar] [CrossRef]
- Mujtaba, M.; Akyuz, L.; Koc, B.; Kaya, M.; Ilk, S.; Cansaran-Duman, D.; Martinez, A.S.; Cakmak, Y.S.; Labidi, J.; Boufi, S. Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocoll. 2019, 89, 20. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Kim, S.R.; Hahn, D.; Lee, W.Y. Influences of combined enzyme-ultrasonic extraction on the physicochemical characteristics and properties of okra polysaccharides. Food Hydrocoll. 2020, 100, 105396. [Google Scholar]
- Olawuyi, I.F.; Lee, W.Y. Structural characterization, functional properties and antioxidant activities of polysaccharide extract obtained from okra leaves (Abelmoschus esculentus). Food Chem. 2021, 354, 129437. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.A.; Yilmaz, N.D.; Yilmaz, K. Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers. J. Text. Inst. 2020, 111, 1418. [Google Scholar]
- Kaewprachu, P.; Jaisan, C.; Rawdkuen, S.; Tongdeesoontorn, W.; Klunklin, W. Carboxymethyl cellulose from Young Palmyra palm fruit husk: Synthesis, characterization, and film properties. Food Hydrocoll. 2022, 124, 107277. [Google Scholar]
- Mondal, M.I.H.; Yeasmin, M.S.; Rahman, M.S. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int. J. Biol. Macromol. 2015, 79, 144. [Google Scholar]
- Gheribi, R.; Khwaldia, K. Cactus Mucilage for Food Packaging Applications. Coatings 2019, 9, 655. [Google Scholar]
- Das, S.K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl cellulose and cardamom oil in a nanoemulsion edible coating inhibit the growth of foodborne pathogens and extend the shelf life of tomatoes. Biocatal. Agric. Biotechnol. 2022, 42, 102369. [Google Scholar]
- Roshandel-Hesari, N.; Mokaber-Esfahani, M.; Taleghani, A.; Akbari, R. Investigation of physicochemical properties, antimicrobial and antioxidant activity of edible films based on chitosan/casein containing Origanum vulgare L. essential oil and its effect on quality maintenance of cherry tomato. Food Chem. 2022, 396, 133650. [Google Scholar]
- Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Bu, T.; Wang, X.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. Lwt 2021, 142, 110987. [Google Scholar]
- Buendía, L.; Soto, S.; Ros, M.; Antolinos, V.; Navarro, L.; Sánchez, M.J.; Martínez, G.B.; López, A. Innovative cardboard active packaging with a coating including encapsulated essential oils to extend cherry tomato shelf life. Lwt 2019, 116, 108584. [Google Scholar]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Sethi, S.; Singh, A. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. J. Food Sci. 2022, 87, 2256–2290. [Google Scholar]
- Samsi, M.S.; Kamari, A.; Din, S.M.; Lazar, G. Synthesis, characterization and application of gelatin–carboxymethyl cellulose blend films for preservation of cherry tomatoes and grapes. J. Food Sci. Technol. 2019, 56, 3099. [Google Scholar]
- Li, Y.; Zhou, Y.; Wang, Z.; Cai, R.; Yue, T.; Cui, L. Preparation and Characterization of Chitosan–Nano-ZnO Composite Films for Preservation of Cherry Tomatoes. Foods 2021, 10, 3135. [Google Scholar]
- Saberi, B.; Golding, J.B.; Marques, J.R.; Pristijono, P.; Chockchaisawasdee, S.; Scarlett, C.J.; Stathopoulos, C.E. Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’oranges. Postharvest Biol. Technol. 2018, 137, 9. [Google Scholar]
- Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT-Food Sci. Technol. 2012, 48, 52. [Google Scholar]
- Yang, J.; Wang, Y.; Zhang, W.; Li, M.; Peng, F.; Bian, J. Alkaline deep eutectic solvents as novel and effective pretreatment media for hemicellulose dissociation and enzymatic hydrolysis enhancement. Int. J. Biol. Macromol. 2021, 193, 1610. [Google Scholar] [CrossRef]
- Guo, S.; Li, T.; Chen, M.; Wu, C.; Ge, X.; Fan, G.; Li, X.; Zhou, D.; Zhao, X.; Yang, T. Sustainable and effective Chitosan-based edible films incorporated with OEO nanoemulsion against apricots’ black spot. Food Control 2022, 138, 108965. [Google Scholar]
- Zhang, L.; Li, K.; Yu, D.; Regenstein, J.M.; Dong, J.; Chen, W.; Xia, W. Chitosan/zein bilayer films with one-way water barrier characteristic: Physical, structural and thermal properties. Int. J. Biol. Macromol. 2022, 200, 378. [Google Scholar] [CrossRef]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Park, J.J.; Lee, J.J.; Lee, W.Y. Combined effect of chitosan coating and modified atmosphere packaging on fresh-cut cucumber. Food Sci. Nutr. 2019, 7, 1043. [Google Scholar]
- Jia, C.-G.; Xu, C.-J.; Wei, J.; Yuan, J.; Yuan, G.-F.; Wang, B.-L.; Wang, Q.-M. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem. 2009, 114, 28. [Google Scholar] [CrossRef]
- Xiang, F.; Xia, Y.; Wang, Y.; Wang, Y.; Wu, K.; Ni, X. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packag. Shelf Life 2021, 29, 100701. [Google Scholar]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 2014, 36, 9. [Google Scholar] [CrossRef]
- Kang, S.; Wang, H.; Xia, L.; Chen, M.; Li, L.; Cheng, J.; Li, X.; Jiang, S. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydr. Polym. 2020, 229, 115402. [Google Scholar]
- Zhang, W.; Cao, J.; Jiang, W. Effect of different cation in situ cross-linking on the properties of pectin-thymol active film. Food Hydrocoll. 2022, 128, 107594. [Google Scholar]
- Khalil, R.K.; Sharaby, M.R.; Abdelrahim, D.S. Novel active edible food packaging films based entirely on citrus peel wastes. Food Hydrocoll. 2022, 134, 107961. [Google Scholar]
- Norcino, L.; Mendes, J.; Natarelli, C.; Manrich, A.; Oliveira, J.; Mattoso, L. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll. 2020, 106, 105862. [Google Scholar] [CrossRef]
- Wu, H.; Tong, C.; Wu, C.; Pang, J. Production and characterization of composite films with zein nanoparticles based on the complexity of continuous film matrix. Lwt 2022, 161, 113396. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Park, J.J.; Hahn, D.; Lee, W.Y. Physicochemical and Functional Properties of Okra Leaf Polysaccharides Extracted at Different pHs. Chemistry 2022, 4, 405. [Google Scholar]
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; de Oliveira Rios, A.; Flôres, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 2015, 130, 198. [Google Scholar]
- Wang, R.; Li, X.; Ren, Z.; Xie, S.; Wu, Y.; Chen, W.; Ma, F.; Liu, X. Characterization and antibacterial properties of biodegradable films based on CMC, mucilage from Dioscorea opposita Thunb. and Ag nanoparticles. Int. J. Biol. Macromol. 2020, 163, 2189. [Google Scholar] [PubMed]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161. [Google Scholar]
- Sadeghi-Varkani, A.; Emam-Djomeh, Z.; Askari, G. Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. Int. J. Biol. Macromol. 2018, 108, 1110. [Google Scholar] [PubMed]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. Int. J. Biol. Macromol. 2013, 62, 500. [Google Scholar] [PubMed]
- Wang, R.; Li, X.; Liu, L.; Chen, W.; Bai, J.; Ma, F.; Liu, X.; Kang, W. Preparation and characterization of edible films composed of Dioscorea opposita Thunb. mucilage and starch. Polym. Test. 2020, 90, 106708. [Google Scholar]
- Peralta-Ruiz, Y.; Tovar, C.D.G.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chaves-Lopez, C. Reduction of postharvest quality loss and microbiological decay of tomato “Chonto”(Solanum lycopersicum L.) using chitosan-e essential oil-based edible coatings under low-temperature storage. Polymers 2020, 12, 1822. [Google Scholar]
- Botelho, L.N.S.; Rocha, D.A.; Braga, M.A.; Silva, A.; de Abreu, C.M.P. Quality of guava cv.‘Pedro Sato’treated with cassava starch and cinnamon essential oil. Sci. Hortic. 2016, 209, 214. [Google Scholar]
- Olawuyi, I.F.; Lee, W. Influence of chitosan coating and packaging materials on the quality characteristics of fresh-cut cucumber. Korean J. Food Preserv. 2019, 26, 371. [Google Scholar]
- Singh, G.P.; Bangar, S.P.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [PubMed]
- Pushpamalar, V.; Langford, S.J.; Ahmad, M.; Lim, Y.Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 2006, 64, 312. [Google Scholar]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R. Synthesis, characterization, and application of carboxymethyl cellulose from asparagus stalk end. Polymers 2020, 13, 81. [Google Scholar]
- Rizwan, M.; Gilani, S.R.; Durrani, A.I.; Naseem, S. Cellulose extraction of Alstonia scholaris: A comparative study on efficiency of different bleaching reagents for its isolation and characterization. Int. J. Biol. Macromol. 2021, 191, 964. [Google Scholar]
- Pangesti, A.; Tongdeesoontorn, W.; Syarief, R. Application of carboxymethyl cellulose (CMC) from pineapple core as edible coating for cherry tomatoes during storage. In Proceedings of the 22nd Tri-University International Joint Seminar and Symposium at Jiangsu University, Zhenjiang, China, 19–22 October 2015; pp. 19–22. [Google Scholar]
- Saekow, M.; Naradisorn, M.; Tongdeesoontorn, W.; Hamauzu, Y. Effect of carboxymethyl cellulose coating containing ZnO-nanoparticles for prolonging shelf life of persimmon and tomato fruit. J. Food Sci. Agric. Technol. (JFAT) 2019, 5, 41. [Google Scholar]
Films | Composition of Film-Forming Solution (g/100 mL) | ||
---|---|---|---|
CMC | OLP | EO | |
CMC | 2 | 0 | 0 |
CME | 2 | 0 | 0.02 |
5CPE | 1.9 | 0.1 | 0.02 |
10CPE | 1.8 | 0.2 | 0.02 |
30CPE | 1.4 | 0.6 | 0.02 |
Model Indices | K | n | r2 |
---|---|---|---|
CMC | 1.731 | 0.699 | 0.999 |
CME | 1.380 | 0.743 | 1.000 |
5CPE | 1.872 | 0.711 | 0.999 |
10CPE | 2.641 | 0.666 | 0.998 |
30CPE | 9.154 | 0.478 | 0.999 |
Films | Thickness (μm) | L* | a* | b* | WI | Opacity (A mm−1) |
---|---|---|---|---|---|---|
CMC | 150.33 ± 17.93 a | 89.93 ± 1.72 a | −0.73 ± 0.19 d | 9.75 ± 0.64 b | 85.95 ± 1.67 ab | 3.51 ± 0.15 d |
CME | 151.67 ± 8.39 a | 90.85 ± 0.67 a | −0.92 ± 0.06 d | 10.10 ± 1.04 b | 86.34 ± 1.22 a | 4.09 ± 0.13 d |
5CPE | 119.33 ± 3.51 b | 86.87 ± 1.53 b | −0.48 ± 0.10 c | 11.27 ± 1.60 b | 82.68 ± 2.11 ab | 5.12 ± 0.37 c |
10CPE | 104.33 ± 3.51 bc | 86.64 ± 1.78 b | −0.23 ± 0.02 b | 11.52 ± 1.98 b | 82.35 ± 2.64 b | 7.27 ± 0.30 b |
30CPE | 97.67 ± 1.15 c | 80.94 ± 1.78 c | 0.16 ± 0.19 a | 19.00 ± 1.30 a | 73.09 ± 2.17 c | 10.07 ± 0.51 a |
MC (%) | WS (%) | CA (°) | |
---|---|---|---|
CMC | 9.32 ± 0.10 a | 95.74 ± 1.38 a | 79.50 ± 1.70 c |
CME | 9.39 ± 0.49 a | 83.30 ± 1.26 d | 97.85 ± 0.64 a |
5CPE | 9.28 ± 0.14 a | 87.54 ± 0.31 c | 98.40 ± 1.27 a |
10CPE | 8.07 ± 0.23 b | 90.87 ± 1.40 b | 89.95 ± 0.21 b |
30CPE | 8.01 ± 0.59 b | 95.96 ± 1.04 a | 88.75 ± 1.14 b |
Films | Mass Loss (%) | Residue (%) | DTG (Tmax, °C) | ||
---|---|---|---|---|---|
1st Stage | 2nd Stage | 3rd Stage | |||
CMC | 12.19 | 7.49 | 52.86 | 27.46 | 275.94 |
CME | 15.48 | 9.15 | 49.22 | 26.16 | 276.02 |
5CPE | 10.30 | 18.42 | 41.95 | 29.34 | 280.61 |
10CPE | 11.06 | 17.24 | 42.67 | 29.03 | 280.65 |
30CPE | 11.30 | 23.01 | 35.84 | 29.85 | 281.34 |
Storage | Treatments | L* | a* | b* | Redness (a*/b*) | pH | Firmness (kg/cm2) |
---|---|---|---|---|---|---|---|
0 d | CON | 36.86 ± 0.56 a | 17.32 ± 0.59 a | 17.02 ± 0.50 a | 1.02 ± 0.06 a | 4.39 ± 0.01 c | 683.33 ± 42.52 a |
CMC | 35.94 ± 0.25 a | 16.36 ± 1.09 a | 15.77 ± 1.18 a | 1.04 ± 0.01 a | 4.43 ± 0.01 a | 621.67 ± 162.58 a | |
CME | 36.13 ± 1.34 a | 15.01 ± 1.96 a | 15.93 ± 0.41 a | 0.94 ± 0.10 a | 4.31 ± 0.00 d | 582.75 ± 52.68 a | |
5CPE | 36.24 ± 0.38 a | 17.42 ± 2.02 a | 16.35 ± 0.84 a | 1.06 ± 0.07 a | 4.38 ± 0.00 c | 630.00 ± 55.00 a | |
10CPE | 36.89 ± 0.44 a | 17.42 ± 1.79 a | 16.76 ± 0.98 a | 1.04 ± 0.09 a | 4.40 ± 0.00 b | 605.00 ± 35.00 a | |
30CPE | 36.03 ± 0.49 a | 17.03 ± 1.00 a | 16.69 ± 0.23 a | 1.02 ± 0.06 a | 4.40 ± 0.00 b | 668.33 ± 35.12 a | |
14 d | CON | 46.61 ± 2.17 a | 21.59 ± 3.43 a | 34.86 ± 8.34 a | 0.65 ± 0.25 b | 4.52 ± 0.01 d | 173.40 ± 3.57 d |
CMC | 36.12 ± 1.15 b | 16.82 ± 0.85 b | 16.59 ± 1.15 a | 1.02 ± 0.09 a | 4.58 ± 0.01 b | 457.90 ± 34.99 bc | |
CME | 35.86 ± 0.75 b | 17.25 ± 1.44 b | 15.00 ± 1.31 a | 1.15 ± 0.09 a | 4.60 ± 0.01 a | 400.82 ± 40.46 c | |
5CPE | 36.32 ± 0.81 b | 16.23 ± 2.00 b | 14.37 ± 1.82 a | 1.13 ± 0.06 a | 4.57 ± 0.01 ab | 538.73 ± 42.29 a | |
10CPE | 36.52 ± 0.24 b | 16.85 ± 2.18 b | 14.89 ± 1.57 a | 1.13 ± 0.07 a | 4.57 ± 0.01 ab | 474.00 ± 8.32 b | |
30CPE | 36.42 ± 0.89 b | 16.44 ± 0.54 b | 15.91 ± 0.67 a | 1.03 ± 0.08 a | 4.56 ± 0.01 c | 450.93 ± 51.04 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olawuyi, I.F.; Lee, W.Y. Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers 2022, 14, 4884. https://doi.org/10.3390/polym14224884
Olawuyi IF, Lee WY. Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers. 2022; 14(22):4884. https://doi.org/10.3390/polym14224884
Chicago/Turabian StyleOlawuyi, Ibukunoluwa Fola, and Won Young Lee. 2022. "Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application" Polymers 14, no. 22: 4884. https://doi.org/10.3390/polym14224884
APA StyleOlawuyi, I. F., & Lee, W. Y. (2022). Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers, 14(22), 4884. https://doi.org/10.3390/polym14224884