Experimental Measurement of Diffusion Coefficient of Polyimide Film for Capacitive Humidity Sensors
Abstract
:1. Introduction
2. The Principle
2.1. Humidity Sensing Mechanism of the Sensor
2.2. The Test Principle
2.3. The Test System
2.4. The Test Procedure
3. Preparation of Polyimide Films
3.1. Subsection
3.2. Film Analysis
4. The Test Results and Analysis
4.1. The Reagent Effect
4.2. The Concentration Effect
4.3. The Environment Temperature Effect
5. Conclusions
- (1)
- The test system and method is simple and practical, which is helpful to fill in the effective diffusion coefficient database of the porous membranes;
- (2)
- According to the good linearity of the curves in the test range, obvious condensation and hydrophilic groups in the films were not found. Among the four films tested, BB film was the better choice for use as a moisture sensitive film of a capacitive humidity sensor;
- (3)
- On the humidity-sensitive property of PI film, the concentration effect could be indirect, and high temperature had a large impact in the low humidity environment;
- (4)
- The morphology of the film is correlated with the sensing performance, which will be the next research project of our team.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tulliani, J.-M.; Inserra, B.; Ziegler, D. Carbon-based materials for humidity sensing: A short review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Jameel, M.A.; Harrison, C.J.; Gupta, A.; Evans, R.A.; Shafiei, M.; Langford, S.J. Enhanced capacitive humidity sensing performance at room temperature via hydrogen bonding of cyanopyridone-based oligothiophene donor. Chemosensors 2021, 9, 320. [Google Scholar] [CrossRef]
- Pang, Y. The Research of Capacitive Humidity-sensitive Properties of FLUPI. Master’s Thesis, Chongqing University, Chongqing, China, 2004. [Google Scholar]
- Yang, C.C.; Hsieh, K.H.; Chen, W.C. A new interpretation of the kinetic model for the imidization reaction of PMDA-ODA and BPDA-PDA poly(amic acid)s. In Proceedings of the Second International Symposium on Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Newark, NJ, USA, 3–6 December 2001. [Google Scholar]
- Zeng, C.; Li, J.; Chen, T.; Chen, J.; Chen, C. Dynamic Sorption and Transport of Water Vapor in Dense Polyimide Membranes. J. Appl. Polym. Sci. 2006, 102, 2189–2198. [Google Scholar] [CrossRef]
- Lokhandwala, K.A.; Nadakatti, S.M.; Stern, S.A. Solubility and Transport of Water Vapor in Some 6FDA-Based Polyimides. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 965–975. [Google Scholar] [CrossRef]
- Siddiqui, G.U.; Sajid, M.; Ali, J.; Kim, S.W.; Doh, Y.H.; Choi, K.H. Wide range highly sensitive relative humidity sensor based on series combination of MoS2 and PEDOT: PSS sensors array. Sens. Actuators 2018, 266, 354–363. [Google Scholar] [CrossRef]
- Ansari, M.O.; Ansari, S.A.; Cho, M.H.; Ansari, S.P.; Abdel-wahab, M.S.; Alshahrie, A. Conducting polymer nanocomposites as gas sensors. In Functional Polymers; Springer: Cham, Switzerland, 2019; pp. 911–940. [Google Scholar]
- Manjunatha, S.; Machappa, T.; Ravikiran, Y.T.; Chethan, B.; Sunilkumar, A. Polyaniline based stable humidity sensor operable at room temperature. Physica B 2019, 561, 170–178. [Google Scholar] [CrossRef]
- Raza, E.; Asif, M.; Aziz, F.; Azmer, M.I.; Malik, H.A.; Teh, C.-H.; Najeeb, M.A.; Zafar, Q.; Ahmad, Z.; Wahab, F.; et al. Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT2. Sens. Actuators B Chem. 2016, 235, 146–153. [Google Scholar] [CrossRef]
- Xing, X.; Jiang, X.; Liu, F.; Kuang, K.; Qin, H. Research on FGB humidity sensor based on polyimide material. Laser Optoelectron. Progess 2022, 59, 394–399. [Google Scholar]
- Huang, Y. Research on Capacitive Humidity Sensor Based on Polyimide Film. Master’s Thesis, Jiangnan University, Wuxi, China, 2016. [Google Scholar]
- Ouyang, H.; Lee, S. An Alternative Analysis of Water Vapor and Gas Transport in Polyimide Films. J. Mater. Res. 1997, 12, 2794–2798. [Google Scholar] [CrossRef]
- Huang, J.; Cranford, R.J.; Matsuura, T.; Roy, C. Sorption and transport behavior of water vapor in dense and asymmetric polyimide membranes. J. Membr. Sci. 2004, 241, 187–196. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Li, J. Sorption and Diffusion Characteristics of Water Vapor in Dense Polyimide Membranes. J. Chem. Eng. Data 2007, 52, 2146–2152. [Google Scholar] [CrossRef]
- Zhou, W.; He, X.; Wu, J.; Wang, L.; Wang, L. Numerical study on response time of a parallel plate capacitive polyimide humidity sensor based on microhole upper electrode. J. Micro/Nanolithography MEMS MOEMS 2017, 16, 034502. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, L. Numerical Study of the Structural Parameter Effects on the Dynamic Characteristics of a Polyimide Film Micro-Capacitive Humidity Sensor. IEEE Sens. J. 2016, 16, 5979–5986. [Google Scholar] [CrossRef]
- ASTM. Standard test method for water vapor transmission of materials. In Annual Book of Astm Standards; ASTM: West Conshohocken, PA, USA, 1995. [Google Scholar]
- Luo, W.; Wu, S.; Liu, P.; Cheng, Z.; Zhou, Z.; Fang, Y. Effect of capillary condensation on effective diffusivity of gases in porous pellet. CIESC J. 2015, 25, 1079–1085. [Google Scholar]
- Collet, F.; Achchaq, F.; Djellab, K.; Marmoret, L.; Beji, H. Water vapor properties of two hemp wools manufactured with different treatments. Constr. Build. Mater. 2011, 25, 1079–1085. [Google Scholar] [CrossRef]
- Peleg, M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng. 2010, 16, 21–37. [Google Scholar] [CrossRef]
- Poyet, S.; Charles, S. Temperature dependence of the sorption isotherms of cement-based materials: Heat of sorption and Clausius–Clapeyron formula. Cem. Concr. Res. 2009, 39, 1060–1067. [Google Scholar] [CrossRef]
Name | Model | Brand | Quantity |
---|---|---|---|
Electronic scales | HZ-104/55S | The United States Huszhi | 1 |
Oil-less air compressor | SQ12 | Qiangsheng | 1 |
Temperature and humidity sensor | RS-WS-NO1-SMG-7 | Renke | 3 |
Constant temperature humidity chamber | HWHS-225-0 | Aodema | 1 |
Barometer | Y-100 | Hongqi | 3 |
Voltage-stabilized source | MP6010D | Maisheng | 1 |
Reagent | Specification | Manufacturer |
---|---|---|
BAPP | 98% | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
PMDA | 98% | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
ODA | 98% | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
BPDA | 97% | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
DMAC | Analytically pure | Shanghai Zhongqin Chemical Reagent Co., Ltd., Shanghai, China |
Group | Spectral Characteristic Peak (cm−1) |
---|---|
C=O asymmetrical stretching | 1779.45, 1775.01, 1776.83 |
C=O symmetric stretching | 1727.01, 1719.67, 1725.32 |
C-N extension | 1388.47, 1375.00, 1378.88 |
C=O bend | 725.66, 738.00, 725.44 |
benzene ring | 1504.8, 1502.30, 1502.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhou, W.; Wang, X.; Li, S. Experimental Measurement of Diffusion Coefficient of Polyimide Film for Capacitive Humidity Sensors. Polymers 2022, 14, 4910. https://doi.org/10.3390/polym14224910
Wu J, Zhou W, Wang X, Li S. Experimental Measurement of Diffusion Coefficient of Polyimide Film for Capacitive Humidity Sensors. Polymers. 2022; 14(22):4910. https://doi.org/10.3390/polym14224910
Chicago/Turabian StyleWu, Jianyun, Wenhe Zhou, Xiaowei Wang, and Shicheng Li. 2022. "Experimental Measurement of Diffusion Coefficient of Polyimide Film for Capacitive Humidity Sensors" Polymers 14, no. 22: 4910. https://doi.org/10.3390/polym14224910
APA StyleWu, J., Zhou, W., Wang, X., & Li, S. (2022). Experimental Measurement of Diffusion Coefficient of Polyimide Film for Capacitive Humidity Sensors. Polymers, 14(22), 4910. https://doi.org/10.3390/polym14224910