Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Red Cabbage Extract
2.3. Preparation of Intelligent and Biodegradable Gelatin-, CMC-, Chitosan-Based Monolayer Films and Multi-Layer Films Fortified with RCE
2.4. Characterization of Intelligent and Biodegradable Film
2.4.1. Film Thickness and Microstructure
2.4.2. Mechanical Properties
2.4.3. Water Vapor Permeability (WVP)
2.4.4. Moisture Content
2.4.5. Film Solubility
2.4.6. Color Properties, Light Transmission and Film Transparency
2.4.7. PH Sensitivity and Gas Sensitivity of the Film
2.4.8. Dye Leaching Test and Biodegradability Test
2.5. Application of Intelligent and Biodegradable Multi-Layer Film on the Freshness of Tilapia Fish Fillets
2.5.1. Fish Spoilage Trial
2.5.2. Total Volatile Basic Nitrogen (TVB-N) Content
2.5.3. Microbial Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Thickness and Microstructure of Gelatin-, CMC-, Chitosan-Based Monolayer Films and Multi-Layer Films Fortified with RCE
3.2. Mechanical and Physio-Chemical Properties of Gelatin-, CMC-, Chitosan-Based Monolayer Films and Multi-Layer Films Added with RCE
3.2.1. Mechanical Properties
3.2.2. Physical Properties of Intelligent Films
3.2.3. Chemical Characteristics of Intelligent Films
3.3. Application of Intelligent Film on the Freshness and Microbial Quality of Tilapia Fish Fillets during 10 Days of Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joseph, K.; Paul, B. Smart Packaging Technologies for Fast Moving Consumer Goods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Mohebi, E.; Marquez, L. Intelligent packaging in meat industry: An overview of existing solutions. J. Food Sci. Technol.-Mysore 2015, 52, 3947–3964. [Google Scholar] [CrossRef]
- Zhai, X.D.; Li, Z.H.; Zhang, J.J.; Shi, J.Y.; Zou, X.Y.; Huang, X.W.; Zhang, D.; Sun, Y.; Yang, Z.K.; Holmes, M.; et al. Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Maté, J.I. Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control 2021, 121, 107645. [Google Scholar] [CrossRef]
- Geueke, B.; Groh, K.; Muncke, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 2018, 193, 491–505. [Google Scholar] [CrossRef]
- Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. 3-Biopolymer composites with high dielectric performance: Interface Engineering. In Biopolymer Composites in Electronics; Sadasivuni, K.K., Ponnamma, D., Kim, J., Cabibihan, J.J., AlMaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–128. [Google Scholar]
- Sahid, S.N.; Mohammad, I.-F.R.; Zuriyati, A.a.A.M.; Zainal, H.N.A. Effects of palm was on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag. Shelf Life 2020, 23, 100437. [Google Scholar] [CrossRef]
- David, P. Biopolymers—New Materials for Sustainable Films and Coatings; Wiley: Chichester, UK, 2011. [Google Scholar]
- Raman, A.; Babak, C.; Ali, A.; Akram, P. Nanotechnology and Biopolymers in Food Packaging: Focused on Carboxymethyl Cellulose (CMC) as an Edible Biopolymer in Bio-based Films and Nanocomposites. In Proceedings of the 1st International Food Science and Technology Congress and 24th Iranian Food Science and Technology Congress, Tehran, Iran, 16 October 2016. [Google Scholar]
- Yun, D.; Cai, H.; Liu, Y.; Xiao, L.; Song, J.; Liu, J.F. Development of active and intelligent films based on cassava starch and Chinese bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC Adv. 2019, 9, 30905–30916. [Google Scholar] [CrossRef] [Green Version]
- Soto-Hernandez, M.; Palma Tenango, M.; García-Mateos, M. Phenolic Compounds—Natural Sources, Importance and Applications; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Fang, S.; Lin, F.; Qu, D.; Liang, X.; Wang, L. Characterization of Purified Red Cabbage Anthocyanins: Improvement in HPLC Separation and Protective Effect against H₂O₂-Induced Oxidative Stress in HepG2 Cells. Molecules 2018, 24, 124. [Google Scholar] [CrossRef] [Green Version]
- Echegaray, N.; Munekata, P.E.S.; Gullón, P.; Dzuvor, C.K.O.; Gullón, B.; Kubi, F.; Lorenzo, J.M. Recent advances in food products fortification with anthocyanins. Crit. Rev. Food Sci. Nutr. 2022, 62, 1553–1567. [Google Scholar] [CrossRef]
- Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll. 2019, 87, 858–868. [Google Scholar] [CrossRef]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef]
- Jokioja, J.; Yang, B.; Linderborg, K.M. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5570–5615. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Tsuge, H. Micro- and Nanobubbles-Fundamentals and Applications; Pan Stanford Publishing Pte. Ltd., 2014; pp. 1–355. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Shen, Z.; Nabinejad, O.; Shu, Z. Development of biodegradable composite chitosan-based films incorporated with xylan and carvacrol for food packaging application. Food Packag. Shelf Life 2019, 21, 100344. [Google Scholar] [CrossRef]
- Irsali, F.M.; Sitanggang, A.B. The Incorporation of Oleic Acid and Anthocyanin in Gelatin Film for Bekasam pH Monitoring. Undergraduate Thesis, Bogor Agricultural University (IPB), Bogor, Indonesia, 2019. Available online: http://repository.ipb.ac.id/handle/123456789/98074 (accessed on 15 August 2022).
- Pajnik, J.; Dikić, J.; Milovanovic, S.; Milosevic, M.; Jevtic, S.; Lukić, I. Zeolite/Chitosan/Gelatin Films: Preparation, Supercritical CO2 Processing, Characterization, and Bioactivity. Macromol. Mater. Eng. 2022, 307, 2200009. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Ben Amara, C.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin films with nisin and catechin for minced pork preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-W.; Zou, X.-B.; Shi, J.-Y.; Li, Z.-H.; Zhao, J.-W. Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar] [CrossRef]
- Lee, K.; Baek, S.; Kim, D.; Seo, J. A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis. Food Packag. Shelf Life 2019, 19, 40–46. [Google Scholar] [CrossRef]
- Suriyatem, R.; Auras, R.A.; Rachtanapun, C.; Rachtanapun, P. Biodegradable Rice Starch/Carboxymethyl Chitosan Films with Added Propolis Extract for Potential Use as Active Food Packaging. Polymers 2018, 10, 954. [Google Scholar] [CrossRef] [Green Version]
- Buchi. Application Note, Distillation Unit K-355. In Determination of Total Volatile Basic Nitrogen (TVB-N) in Fish and Shrimps; Buchi Laboretechnik AG: Flawil, Switzerland, 2006; pp. 1–8. [Google Scholar]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Tang, K.; Hu, X.; Zou, G. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J. Appl. Polym. Sci. 2008, 107, 891–897. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019, 96, 102–111. [Google Scholar] [CrossRef]
- Sun, K.-Q.; Li, F.-Y.; Li, J.-Y.; Li, J.-F.; Zhang, C.-W.; Chen, S.; Sun, X.; Cui, J.-F. Optimisation of compatibility for improving elongation at break of chitosan/starch films. RSC Adv. 2019, 9, 24451–24459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, H.; Wang, X.; Zhang, X.; Liu, Y.; Qin, Y.; Liu, J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll. 2019, 94, 93–104. [Google Scholar] [CrossRef]
- Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D.R. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria × ananassa Duch.). Food Res. Int. 2012, 48, 241–248. [Google Scholar] [CrossRef]
- Bourbon, A.I.; Pinheiro, A.C.; Cerqueira, M.A.; Rocha, C.M.R.; Avides, M.C.; Quintas, M.A.C.; Vicente, A.A. Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J. Food Eng. 2011, 106, 111–118. [Google Scholar] [CrossRef]
- Nazmi, N.N.; Isa, M.I.N.; Sarbon, N.M. Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Biosci. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Romruen, O.; Kaewprachu, P.; Karbowiak, T.; Rawdkuen, S. Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract. Polymers 2022, 14, 2487. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Benjakul, S.; Tongdeesoontorn, W.; Rawdkuen, S. Biodegradable Protein-based Films and Their Properties: A Comparative Study. Packag. Technol. Sci. 2016, 29, 77–90. [Google Scholar] [CrossRef]
- Chigurupati, N.; Saiki, L.; Gayser, C.; Dash, A.K. Evaluation of red cabbage dye as a potential natural color for pharmaceutical use. Int. J. Pharm. 2002, 241, 293–299. [Google Scholar] [CrossRef]
- Koshy, R.R.; Reghunadhan, A.; Mary, S.K.; Thomas, K.; Ajish, K.R.; Thomas, S.; Pothen, L.A. Intelligent pH-sensitive films from whole arrowroot powder and soy protein isolate incorporating red cabbage anthocyanin: Monitoring freshness of shrimps and ammonia in fish farming ponds. New J. Chem. 2022, 46, 9036–9047. [Google Scholar] [CrossRef]
- Johnson, J.B.; El Orche, A.; Naiker, M. Prediction of anthocyanin content and variety in plum extracts using ATR-FTIR spectroscopy and chemometrics. Vib. Spectrosc. 2022, 121, 103406. [Google Scholar] [CrossRef]
- Mohamed, S.; Hamid, N.A.; Hamid, M.A. Food components affecting the oil absorption and crispness of fried batter. J. Sci. Food Agric. 1998, 78, 39–45. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Monvisade, P. Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: Potential for food and biomedical applications. Carbohydr. Polym. 2021, 260, 117836. [Google Scholar] [CrossRef]
- Jahit, I.; Nazmi, N.; Sarbon, N.; Mohamad Isa, M.I.N. Preparation and physical properties of gelatin/CMC/chitosan composite films as affected by drying temperature. Int. Food Res. J. 2016, 23, 1068–1074. [Google Scholar]
- Mustapha, F.A.; Jai, J.; Nik Raikhan, N.H.; Sharif, Z.I.M.; Yusof, N.M. Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger. Food Control 2019, 99, 106–113. [Google Scholar] [CrossRef]
- Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydr. Polym. 2014, 101, 20–28. [Google Scholar] [CrossRef]
- Shahmohammadi, H.R.; Bakar, J.; Russly, A.R.; Noranizan, M.A.; Mirhosseini, H. Studying The Effects of Fish Muscle Incorporation on Storage Stability of A Novel Corn-fish Snack. J. Food Qual. 2015, 39, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Lougovois, V. Freshness Quality and Spoilage of Chilled-Stored Fish; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2005; pp. 35–86. [Google Scholar]
- Zi-Chao, W.; Yuzhen, Y.; Tanzeela, N.; Lijun, S.; Ping, S.; De-Wei, C.; Yurong, C. Influence of psotmortem treatment with nitric oxide on the muscle color and color stability of tilapia (Oreochromis niloticus) fillets. Nitric Oxide 2018, 76, 122–128. [Google Scholar]
- Idako, P.Y.; Negbenebor, C.A.; Badau, M.H.; Gbenyi, D.I. Total volatile base nitrogen (TVBN) and trimethylamine (TMA) content of "Bunyi youri" as influenced by the addition of glucose and clove during storage. Int. J. Biotechnol. Food Sci. 2016, 4, 81–85. [Google Scholar]
- Wells, N.; Yusufu, D.; Mills, A. Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta 2018, 194, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Tagrida, M.; Benjakul, S.; Zhang, B. Use of betel leaf (Piper betle L.) ethanolic extract in combination with modified atmospheric packaging and nonthermal plasma for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. J. Food Sci. 2021, 86, 5226–5239. [Google Scholar] [CrossRef]
- Tagrida, M.; Benjakul, S. Betel (Piper betle L.) leaf ethanolic extracts dechlorophyllized using different methods: Antioxidant and antibacterial activities, and application for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. RSC Adv. 2021, 11, 17630–17641. [Google Scholar] [CrossRef]
Film Samples | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) | WVP (10−5/10−6 g mm h−1 cm−2 P−1) | Moisture Content (%) | Solubility (%) |
---|---|---|---|---|---|---|
Gelatin | 0.035 ± 0.01 b | 9.15 ± 1.40 d | 9.61 ± 11.1 c | 1.84 ± 0.56 | 16.68 ± 1.52 c | 37.61 ± 1.03 b |
CMC | 0.040 ± 0.01 b | 15.89 ± 1.50 c | 35.67 ± 7.62 a | 5.15 ± 0.79 | 19.54 ± 1.12 b c | 77.41 ± 0.94 a |
Chitosan | 0.034 ± 0.01 b | 21.76 ± 2.71 a | 23.54 ± 5.15 b | 5.56 ± 1.20 | 24.41 ± 2.36 a | 24.94 ± 4.11 c |
Multi-layered | 0.123 ± 0.00 a | 18.73 ± 2.71 b | 33.12 ± 9.88 a | 1.24 ± 0.05 | 20.12 ± 0.59 b | 23.19 ± 1.13 c |
Film Base | Transmittance at Different Wavelengths (nm) | Transparency% | |||
---|---|---|---|---|---|
200 nm | 400 nm | 600 nm | 800 nm | ||
Gelatin | 58.93 | 66.88 | 75.03 | 81.10 | 7.91 ± 0.04 a |
CMC | 48.60 | 56.41 | 65.77 | 69.83 | 3.34 ± 0.09 c |
Chitosan | 37.67 | 44.76 | 62.40 | 76.46 | 6.01 ± 0.19 b |
Multi-layered | 27.60 | 37.50 | 47.90 | 66.80 | 1.32 ± 0.08 d |
Film Samples | Appearance | L* | a* | b* |
---|---|---|---|---|
Gelatin | 95.02 ± 0.62 a | −1.60 ± 0.10 a | 2.09 ± 0.34 b | |
CMC | 98.58 ± 0.38 a | −1.35 ± 0.01 a | 0.97 ± 0.02 c | |
Chitosan | 89.34 ± 1.09 b | −12.40 ± 0.89 b | 3.91 ± 0.27 a | |
Multilayer | 85.26 ± 1.33 c | −13.77 ± 0.74 c | 4.11 ± 0.57 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zam, M.; Niyumsut, I.; Osako, K.; Rawdkuen, S. Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers 2022, 14, 4914. https://doi.org/10.3390/polym14224914
Zam M, Niyumsut I, Osako K, Rawdkuen S. Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers. 2022; 14(22):4914. https://doi.org/10.3390/polym14224914
Chicago/Turabian StyleZam, Mindu, Itthi Niyumsut, Kazufumi Osako, and Saroat Rawdkuen. 2022. "Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness" Polymers 14, no. 22: 4914. https://doi.org/10.3390/polym14224914
APA StyleZam, M., Niyumsut, I., Osako, K., & Rawdkuen, S. (2022). Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers, 14(22), 4914. https://doi.org/10.3390/polym14224914