Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications
Abstract
:1. Introduction
2. Biosynthesis and Genetics of Sericin and Its Physical and Chemical Properties
3. Extraction Methods of Sericin from Silk Cocoons
Influence of the Extraction Method on Sericin Yield and Characteristics
4. Sericin Properties Favorable for Biomedical and Pharmaceutical Applications
4.1. Biocompatibility and Immunological Response
4.2. Biodegradability
4.3. Anti-Inflammatory Activity
4.4. Antibacterial Activity
4.5. Antioxidant and Photoprotective Activity
5. Sericin Biomedical and Pharmaceutical Applications
5.1. Drug Delivery
5.2. Tissue Engineering
5.3. Other Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cramer, E. Ueber die Bestandtheile der Seide. J. Prakt. Chem. 1865, 96, 76–98. [Google Scholar]
- Huang, N.; Chen, J. 7000 Year of Chinese Silk Science and Technology; Chinese Textile Press: Beijing, China, 2002. [Google Scholar]
- Gong, Y.; Li, L.; Gong, D.; Yin, H.; Zhang, J. Biomolecular Evidence of Silk from 8500 Years Ago. PLoS ONE 2016, 11, e0168042. [Google Scholar]
- Rheinberg, L. THE ROMANCE OF SILK: A Review of Sericulture and the Silk Industry. Text. Prog. 1991, 21, 1–43. [Google Scholar]
- Ingle, S.; Bagde, N.; Ansari, R.F.; Kayarwar, A.B. Analysis of growth and instability of silk production in India. J. Pharmacogn. Phytochem. 2022, 11, 195–201. [Google Scholar] [CrossRef]
- Babu, K.M. 1-Silk production and the future of natural silk manufacture. In Handbook of Natural Fibres; Kozłowski, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 3–29. [Google Scholar]
- Aramwit, P.; Siritientong, T.; Srichana, T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag. Res. 2012, 30, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Giacomin, A.M.; Garcia, J.B.; Zonatti, W.F.; Silva-Santos, M.C.; Laktim, M.C.; Baruque-Ramos, J. Silk industry and carbon footprint mitigation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 192008. [Google Scholar]
- Lu, L.; Fan, W.; Ge, S.; Liew, R.K.; Shi, Y.; Dou, H.; Wang, S.; Lam, S.S. Progress in recycling and valorization of waste silk. Sci. Total Environ. 2022, 830, 154812. [Google Scholar] [PubMed]
- Fabiani, C.; Pizzichini, M.; Spadoni, M.; Zeddita, G. Treatment of waste water from silk degumming processes for protein recovery and water reuse. Desalination 1996, 105, 1–9. [Google Scholar]
- Liu, J.; Shi, L.; Deng, Y.; Zou, M.; Cai, B.; Song, Y.; Wang, Z.; Wang, L. Silk sericin-based materials for biomedical applications. Biomaterials 2022, 287, 121638. [Google Scholar]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. Biomed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, R.; Kanoujia, J.; Parashar, P.; Saraf, S. Sericin: A versatile protein biopolymer with therapeutic significance. Curr. Pharm. Des. 2020, 26, 5414–5429. [Google Scholar]
- Arango, M.C.; Montoya, Y.; Peresin, M.S.; Bustamante, J.; Álvarez-López, C. Silk sericin as a biomaterial for tissue engineering: A review. Int. J. Polym. Mater. 2021, 70, 1115–1129. [Google Scholar] [CrossRef]
- Ahsan, F.; Ansari, T.M.; Usmani, S.; Bagga, P. An Insight on Silk Protein Sericin: From Processing to Biomedical Application. Drug Dev. Res. 2018, 68, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.P.; Mandal, B.B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic. Biol. Med. 2017, 108, 803–818. [Google Scholar] [PubMed]
- Zhang, Y.Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Dash, B.C.; Mandal, B.B.; Kundu, S.C. Silk gland sericin protein membranes: Fabrication and characterization for potential biotechnological applications. J. Biotechnol. 2009, 144, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Elahi, M.; Ali, S.; Tahir, H.M.; Mushtaq, R.; Bhatti, M.F. Sericin and fibroin nanoparticles—natural product for cancer therapy: A comprehensive review. Int. J. Polym. Mater. 2021, 70, 256–269. [Google Scholar]
- Ghosh, S.; Rao, R.S.; Nambiar, K.S.; Haragannavar, V.C.; Augustine, D.; Sowmya, S.V. Sericin, a dietary additive: Mini review. J. Med. Radiol. 2019, 6, 4–8. [Google Scholar]
- Rocha, L.K.; Favaro, L.I.; Rios, A.C.; Silva, E.C.; Silva, W.F.; Stigliani, T.P.; Guilger, M.; Lima, R.; Oliveira, J.M., Jr.; Aranha, N. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 2017, 61, 163–177. [Google Scholar] [CrossRef]
- Cao, T.T.; Zhang, Y.Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef]
- Kundu, S.C.; Dash, B.C.; Dash, R.; Kaplan, D.L. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog. Polym. Sci. 2008, 33, 998–1012. [Google Scholar]
- Silva, S.S.; Fernandes, E.M.; Pina, S.; Silva-Correia, J.; Vieira, S.; Oliveira, J.M.; Reis, R.L. 2.11 Polymers of Biological Origin. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 228–252. [Google Scholar]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar]
- Fatahian, R.; Fatahian, A.; Fatahian, E.; Fatahian, H. A critical review on application of silk sericin and its mechanical properties in various industries. J. Res. Appl. Mech. Eng. 2021, 9, 1–11. [Google Scholar]
- Fatahian, R.; Hosseini, E.; Fatahian, A.; Fatahian, E.; Fatahian, H. A Review on Potential Applications of Sericin, and its Biological, Mechanical, and Thermal Stability Characteristics. Eng. Sci. Technol. Int. J. 2022, 9, 1–9. [Google Scholar]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar]
- Gilotra, S.; Chouhan, D.; Bhardwaj, N.; Nandi, S.K.; Mandal, B.B. Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater. Sci. Eng. C 2018, 90, 420–432. [Google Scholar] [CrossRef]
- Kumar, S.S.D.; Abrahamse, H. Sericin-based nanomaterials and their applications in drug delivery. In Bio-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 211–229. [Google Scholar]
- Shitole, M.; Dugam, S.; Tade, R.; Nangare, S. Pharmaceutical applications of silk sericin. Ann. Pharm. Fr. 2020, 78, 469–486. [Google Scholar] [CrossRef]
- Sehnal, F.; Sutherland, T. Silks produced by insect labial glands. Prion 2008, 2, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Hurst, G.H. Silk dyeing, printing, and finishing. Nature 1892, 46, 75. [Google Scholar]
- Lee, K.H. Silk Sericin Retards the Crystallization of Silk Fibroin. Macromol. Rapid Commun. 2004, 25, 1792–1796. [Google Scholar]
- Akai, H. The ultrastructure and functions of the silk gland cells of Bombyx mori. In Insect Ultrastructure; Springer: Berlin/Heidelberg, Germany, 1984; pp. 323–364. [Google Scholar]
- Dhawan, S.; Gopinathan, K.P. Cell cycle events during the development of the silk glands in the mulberry silkworm Bombyx mori. Dev. Genes Evol. 2003, 213, 435–444. [Google Scholar] [PubMed]
- Mondal, M.; Trivedy, K.; Kumar, S.N.I. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., A review. Casp. J. Environ. Sci. 2007, 5, 63–76. [Google Scholar]
- Michaille, J.J.; Garel, A.; Prudhomme, J.C. The expression of five middle silk gland specific genes is territorially regulated during the larval development of Bombyx mori. Insect Biochem. 1989, 19, 19–27. [Google Scholar] [CrossRef]
- Grzelak, K. Control of expression of silk protein genes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 110, 671–681. [Google Scholar]
- Takasu, Y.; Yamada, H.; Tsubouchi, K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2002, 66, 2715–2758. [Google Scholar] [CrossRef] [PubMed]
- Barajas-Gamboa, J.A.; Serpa-Guerra, A.M.; Restrepo-Osorio, A.; lvarez-López, C.Ã. Sericin applications: A globular silk protein. Ing. Competitividad. 2016, 18, 193–206. [Google Scholar] [CrossRef]
- Shaw, J.T.B.; Smith, S.G. Amino-acids of Silk Sericin. Nature 1951, 168, 745. [Google Scholar]
- Zhu, L.J.; Arai, M.; Hirabayashi, K. Gelation of silk sericin and physical properties of the gel. J. Sericult. Sci. Jpn. 1995, 64, 415–419. [Google Scholar]
- Hirabayashi, K.; Arai, M.; Chu, L.J. Gelation of silk sericin. J. Sericult. Sci. Jpn. 1989, 58, 81–82. [Google Scholar]
- Padamwar, M.; Pawar, A. Silk sericin and its applications: A review. J. Sci. Ind. Res. 2004, 63, 323–329. [Google Scholar]
- Freddi, G.; Mossotti, R.; Innocenti, R. Degumming of silk fabric with several proteases. J. Biotechnol. 2003, 106, 101–112. [Google Scholar] [PubMed]
- Yun, H.; Oh, H.; Kim, M.K.; Kwak, H.W.; Lee, J.Y.; Um, I.C.; Vootla, S.K.; Lee, K.H. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. Int. J. Biol. Macromol. 2013, 52, 59–65. [Google Scholar] [PubMed]
- Biswal, B.; Dan, A.K.; Sengupta, A.; Das, M.; Bindhani, B.K.; Das, D.; Parhi, P.K. Extraction of Silk Fibroin with Several Sericin Removal Processes and its Importance in Tissue Engineering: A Review. J. Polym. Environ. 2022, 30, 2222–2253. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Gong, K.; Zhou, Q.; Zhang, T.; Li, Q. A comparative study of ultrasonic degumming of silk sericin using citric acid, sodium carbonate and papain. Color. Technol. 2019, 135, 195–201. [Google Scholar]
- More, S.V.; Chavan, S.; Prabhune, A.A. Silk Degumming and Utilization of Silk Sericin by Hydrolysis Using Alkaline Protease from Beauveria Sp. (MTCC 5184): A Green Approach. J. Nat. Fibers 2018, 15, 373–383. [Google Scholar]
- Silva, V.R.; Ribani, M.; Gimenes, M.L.; Scheer, A.P. High Molecular Weight Sericin Obtained by High Temperature and Ultrafiltration Process. Procedia Eng. 2012, 42, 833–841. [Google Scholar]
- Rangi, A.; Jajpura, L. The Biopolymer Sericin: Extraction and Applications. Int. J. Text. Sci. 2015, 5, 1–5. [Google Scholar]
- Çapar, G.; Aygün, S.S. Characterization of sericin protein recovered from silk wastewaters. Turk hij. ve Deney. Biyol. Derg. Turk. Bull. Hyg. Exp. Biol. 2015, 72, 219–234. [Google Scholar] [CrossRef]
- Dou, H.; Zuo, B. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J. Text. Inst. 2015, 106, 311–319. [Google Scholar]
- Gulrajani, M.; Agarwal, R.S.; Chand, S. Degumming of silk with a fungal protease. Indian J. Fibre Text. Res. 2000, 25, 138–142. [Google Scholar]
- Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [PubMed] [Green Version]
- Chirila, T.V.; Suzuki, S.; McKirdy, N.C. Further development of silk sericin as a biomaterial: Comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog. Biomater. 2016, 5, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [PubMed]
- Das, G.; Shin, H.-S.; Campos, E.V.R.; Fraceto, L.F.; Rodriguez-Torres, M.D.; Mariano, K.C.F.; de Araujo, D.R.; Fernández-Luqueño, F.; Grillo, R.; Patra, J.K. Sericin based nanoformulations: A comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J. Nanobiotechnol. 2021, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Cacopardo, L. Chapter 18-Biomaterials and biocompatibility. In Human Orthopaedic Biomechanics; Innocenti, B., Galbusera, F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 341–359. [Google Scholar]
- Terada, S.; Nishimura, T.; Sasaki, M.; Yamada, H.; Miki, M. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 2002, 40, 3–12. [Google Scholar] [PubMed]
- Terada, S.; Sasaki, M.; Yanagihara, K.; Yamada, H. Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J. Biosci. Bioeng. 2005, 100, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.S.; Panilaitis, B.; Bellas, E.; Kaplan, D.L. Functionalized silk biomaterials for wound healing. Adv. Healthcare Mater. 2013, 2, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.A.; Tosca, M.C.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar]
- Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Srichana, T. Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 2009, 107, 556–561. [Google Scholar] [CrossRef]
- Mandal, B.B.; Priya, A.S.; Kundu, S.C. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009, 5, 3007–3020. [Google Scholar]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthcare Mater. 2019, 8, 1800465. [Google Scholar]
- Cao, Y.; Wang, B. Biodegradation of silk biomaterials. Int. J. Mol. Sci. 2009, 10, 1514–1524. [Google Scholar] [PubMed] [Green Version]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Diagn. 2011, 13, e23. [Google Scholar]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 29, 86–100. [Google Scholar]
- Zhao, X. 5-Antibacterial bioactive materials. In Bioactive Materials in Medicine; Zhao, X., Courtney, J.M., Qian, H., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 97–123. [Google Scholar]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [PubMed] [Green Version]
- de Magalhães, A.P.S.A. Atividade Antimicrobiana em Têxteis; Faculty of Pharmacy-University of Porto: Porto, Portugal, 2015. [Google Scholar]
- Caldeira, E.S.D.A. Biofuncionalização do Algodão com L-Cisteína: Estudo do Efeito Antibacteriano e dos Mecanismos de Acção contra S. aureus e K. Pneumoniae; University of Beira Interior: Covilhã, Portugal, 2012. [Google Scholar]
- Ahamad, S.I.; KumarVootla, S. Extraction and evaluation of antimicrobial potential of antheraea mylitta silk sericin. Int. J. Recent Sci. Res. 2018, 9, 23019–23022. [Google Scholar]
- Jassim, K.; Al-Saree, O. Study of the antimicrobial activity of silk sericin from silkworm bombyx mori. Iraqi J. Med. Sci 2010, 23, 130–133. [Google Scholar]
- Aramwit, P.; Napavichayanum, S.; Pienpinijtham, P.; Rasmi, Y.; Bang, N. Antibiofilm activity and cytotoxicity of silk sericin against Streptococcus mutans bacteria in biofilm: An in vitro study. J. Wound Care 2020, 29, S25–S35. [Google Scholar] [CrossRef]
- Takechi, T.; Wada, R.; Fukuda, T.; Harada, K.; Takamura, H. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods. Biomed. Rep. 2014, 2, 364–369. [Google Scholar]
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar]
- Li, Y.G.; Ji, D.F.; Lin, T.B.; Zhong, S.; Hu, G.Y.; Chen, S. Protective effect of sericin peptide against alcohol-induced gastric injury in mice. Chin. Med. J. 2008, 121, 2083–2087. [Google Scholar] [CrossRef] [PubMed]
- Zhaorigetu, S.; Yanaka, N.; Sasaki, M.; Watanabe, H.; Kato, N. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J. Photochem. Photobiol. B. 2003, 71, 11–17. [Google Scholar] [CrossRef]
- Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. J. Chem. Eng. 2019, 374, 437–470. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Bhatia, S. Natural Polymers vs. Synthetic Polymer. In Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae; Bhatia, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 95–118. [Google Scholar]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef]
- Utech, S.; Boccaccini, A.R. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 2016, 51, 271–310. [Google Scholar]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 568. [Google Scholar]
- Bhatt, K.; Eggermont, L.J.; Bencherif, S.A. Chapter Three-Polymeric scaffolds for antitumor immune cell priming. In Engineering Technologies and Clinical Translation; Amiji, M.M., Milane, L.S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 63–95. [Google Scholar]
- Filippi, M.; Born, G.; Chaaban, M.; Scherberich, A. Natural Polymeric Scaffolds in Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 474. [Google Scholar] [CrossRef]
- Nasr, S.M.; Rabiee, N. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int. J. Nanomed. 2020, 15, 4205–4224. [Google Scholar] [CrossRef] [PubMed]
- Riha, S.M.; Maarof, M.; Fauzi, M.B. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers 2021, 13, 1546. [Google Scholar]
- Lujerdean, C.; Baci, G.M. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13, 286. [Google Scholar] [PubMed]
- Levis, H.J.; Kureshi, A.K.; Massie, I.; Morgan, L.; Vernon, A.J.; Daniels, J.T. Tissue Engineering the Cornea: The Evolution of RAFT. J. Funct. Biomater. 2015, 6, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.G.; van Dyke, M.E. A review of keratin-based biomaterials for biomedical applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef] [Green Version]
- Nishida, A.; Yamada, M.; Kanazawa, T.; Takashima, Y.; Ouchi, K.; Okada, H. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int. J. Pharm. 2011, 407, 44–52. [Google Scholar] [PubMed]
- Yan, C.; Liang, J.; Fang, H.; Meng, X.; Chen, J.; Zhong, Z.; Liu, Q.; Hu, H.; Zhang, X. Fabrication and evaluation of silk sericin-derived hydrogel for the release of the model drug berberine. Gels 2021, 7, 23. [Google Scholar] [PubMed]
- Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; et al. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; et al. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol. 2019, 49, 659–670. [Google Scholar] [PubMed]
- Deng, L.; Guo, W.; Li, G.; Hu, Y.; Zhang, L.M. Hydrophobic IR780 loaded sericin nanomicelles for phototherapy with enhanced antitumor efficiency. Int. J. Pharm. 2019, 566, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yang, Q.; Wang, R.; Tian, C.; Ji, Y.; Tan, H.; Zhao, P.; Kaplan, D.L.; Wang, F.; Xia, Q. Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomater. 2022, 144, 81–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, I.; Lu, Y.; Xu, Y.; Yu, D.-G.; Song, W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J. Control. Release 2022, 349, 963–982. [Google Scholar]
- Tang, Y.; Varyambath, A.; Ding, Y.; Chen, B.; Huang, X.; Zhang, Y.; Yu, D.-G.; Kim, I.; Song, W. Porous organic polymers for drug delivery: Hierarchical pore structures, variable morphologies, and biological properties. Biomater. Sci. 2022, 10, 5369–5390. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Zhang, J.; Huang, L.; Liu, J.; Li, Y.; Zhang, G.; Kundu, S.C.; Wang, L. Exploring natural silk protein sericin for regenerative medicine: An injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci. Rep. 2014, 4, 7064. [Google Scholar] [PubMed] [Green Version]
- Ogino, M.; Tanaka, R.; Hattori, M.; Yoshida, T.; Yokote, Y.; Takahashi, K. Interfacial Behavior of Fatty-Acylated Sericin Prepared by Lipase-Catalyzed Solid-Phase Synthesis. Biosci. Biotechnol. Biochem. 2006, 70, 66–75. [Google Scholar] [PubMed] [Green Version]
- Huang, L.; Tao, K.; Liu, J.; Qi, C.; Xu, L.; Chang, P.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z.; et al. Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs. ACS Appl. Mater. Interfaces 2016, 8, 6577–6585. [Google Scholar]
- Hu, D.; Xu, Z.; Hu, Z.; Hu, B.; Yang, M.; Zhu, L. pH-Triggered Charge-Reversal Silk Sericin-Based Nanoparticles for Enhanced Cellular Uptake and Doxorubicin Delivery. ACS Sustain. Chem. Eng. 2017, 5, 1638–1647. [Google Scholar]
- Oh, H.; Lee, J.Y.; Kim, A.; Ki, C.S.; Kim, J.W.; Park, Y.H.; Lee, K.H. Preparation of silk sericin beads using LiCl/DMSO solvent and their potential as a drug carrier for oral administration. Fibers Polym. 2007, 8, 470–476. [Google Scholar]
- Wang, P.; He, H.; Cai, R.; Tao, G.; Yang, M.; Zuo, H.; Umar, A.; Wang, Y. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr. Polym. 2019, 212, 403–411. [Google Scholar]
- Vineis, C.; Maya, I.C.; Mowafi, S.; Varesano, A.; Ramírez, D.O.S.; Taleb, M.A.; Tonetti, C.; Guarino, V.; El-Sayed, H. Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Int. J. Biol. Macromol. 2021, 190, 375–381. [Google Scholar]
- Noosak, C.; Jantorn, P.; Meesane, J.; Voravuthikunchai, S.; Saeloh, D. Dual-functional bioactive silk sericin for osteoblast responses and osteomyelitis treatment. PLoS ONE 2022, 17, e0264795. [Google Scholar]
- Veiga, A.; Castro, F.; Rocha, F.; Oliveira, A.L. Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Appl. Bio Mater. 2020, 3, 3441–3455. [Google Scholar]
- Ielo, I.; Calabrese, G.; Luca, G.D.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [PubMed]
- Ming, P.; Rao, P.; Wu, T.; Yang, J.; Lu, S.; Yang, B.; Xiao, J.; Tao, G. Biomimetic Design and Fabrication of Sericin-Hydroxyapatite Based Membranes With Osteogenic Activity for Periodontal Tissue Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 899293. [Google Scholar] [PubMed]
- Jiang, L.-B.; Ding, S.-L.; Ding, W.; Su, D.-H.; Zhang, F.-X.; Zhang, T.-W.; Yin, X.-F.; Xiao, L.; Li, Y.-L.; Yuan, F.-L.; et al. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. J. Chem. Eng. 2021, 418, 129323. [Google Scholar]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [PubMed] [Green Version]
- Lamboni, L.; Li, Y.; Liu, J.; Yang, G. Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial. Biomacromolecules 2016, 17, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, D.; Mandal, B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020, 103, 24–51. [Google Scholar] [PubMed]
- Ai, L.; He, H.; Wang, P.; Cai, R.; Tao, G.; Yang, M.; Liu, L.; Zuo, H.; Zhao, P.; Wang, Y. Rational design and fabrication of ZnONPs functionalized sericin/PVA antimicrobial sponge. Int. J. Mol. Sci. 2019, 20, 4796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.R.; Costa, R.; Amorim, M.; Dias, J.R.; Ramos, Ó.; Alves, P.; Granja, P.L.; Soares, R.; et al. In Situ Forming Silk Sericin-Based Hydrogel: A Novel Wound Healing Biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef]
- Sapru, S.; Das, S.; Mandal, M.; Ghosh, A.K.; Kundu, S.C. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing–In vitro and in vivo investigations. Acta Biomater. 2018, 78, 137–150. [Google Scholar]
- Tao, G.; Cai, R.; Wang, Y.; Liu, L.; Zuo, H.; Zhao, P.; Umar, A.; Mao, C.; Xia, Q.; He, H. Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater. Des. 2019, 180, 107940. [Google Scholar] [CrossRef]
- Chen, C.S.; Zeng, F.; Xiao, X.; Wang, Z.; Li, X.L.; Tan, R.W.; Liu, W.Q.; Zhang, Y.S.; She, Z.D.; Li, S.J. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds. ACS Appl. Mater. Interfaces 2018, 10, 33879–33890. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, C.; Zhang, J.; Sun, N.; Huang, K.; Li, H.; Wang, Z.; Huang, K.; Wang, L. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016, 41, 210–223. [Google Scholar] [PubMed]
- Aramwit, P.; Keongamaroon, O.; Siritientong, T.; Bang, N.; Supasyndh, O. Sericin cream reduces pruritus in hemodialysis patients: A randomized, double-blind, placebo-controlled experimental study. BMC Nephrol. 2012, 13, 119. [Google Scholar] [CrossRef] [Green Version]
- Aramwit, P.; Palapinyo, S.; Srichana, T.; Chottanapund, S.; Muangman, P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch. Dermatol. Res. 2013, 305, 585–594. [Google Scholar]
- Siritientong, T.; Angspatt, A.; Ratanavaraporn, J.; Aramwit, P. Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm. Res. 2014, 31, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Napavichayanun, S.; Yamdech, R.; Aramwit, P. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: In vitro, in vivo and clinical studies. Arch. Dermatol. Res. 2016, 308, 123–132. [Google Scholar]
- Kim, J.-W.; Jo, Y.-Y.; Kim, J.-Y.; Oh, J.-h.; Yang, B.-E.; Kim, S.-G. Clinical Study for Silk Mat Application into Extraction Socket: A Split-Mouth, Randomized Clinical Trial. Appl. Sci. 2019, 9, 1208. [Google Scholar]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model Mech. 2009, 2, 231–237. [Google Scholar]
- Okazaki, Y.; Kakehi, S.; Xu, Y.; Tsujimoto, K.; Sasaki, M.; Ogawa, H.; Kato, N. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci. Biotechnol. Biochem. 2010, 74, 1534–1538. [Google Scholar]
- Kunz, R.I.; Capelassi, A.N.; Alegre-Maller, A.C.P.; Bonfleur, M.L.; Ribeiro, L.d.F.C.; Costa, R.M.; Natali, M.R.M. Sericin as treatment of obesity: Morphophysiological effects in obese mice fed with high-fat diet. Einstein 2019, 18, 1–9. [Google Scholar]
- Song, C.; Yang, Z.; Zhong, M.; Chen, Z. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells. Neural Regen. Res. 2013, 8, 506–513. [Google Scholar] [PubMed]
- Zhao, J.G.; Wang, H.Y.; Wei, Z.G.; Zhang, Y.Q. Therapeutic effects of ethanolic extract from the green cocoon shell of silkworm Bombyx mori on type 2 diabetic mice and its hypoglycaemic mechanism. Toxicol. Res. 2019, 8, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhao, S.X.; Yin, X.L.; Wang, H.Y.; Wei, Z.G.; Zhang, Y.Q. Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via anti-oxidation and anti-inflammation. Int. J. Biol. Macromol. 2020, 150, 1061–1071. [Google Scholar] [PubMed]
- Wei, Z.Z.; Weng, Y.J.; Zhang, Y.Q. Investigation of the Repairing Effect and Mechanism of Oral Degraded Sericin on Liver Injury in Type II Diabetic Rats. Biomolecules 2022, 12, 444. [Google Scholar] [PubMed]
- Tengattini, S.; Orlandi, G.; Perteghella, S.; Bari, E.; Amadio, M.; Calleri, E.; Massolini, G.; Torre, M.L.; Temporini, C. Chromatographic profiling of silk sericin for biomedical and cosmetic use by complementary hydrophylic, reversed phase and size exclusion chromatographic methods. J. Pharm. Biomed. Anal. 2020, 186, 113291. [Google Scholar] [PubMed]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Silk Protein Ingredients as Used in Cosmetics. Int. J. Toxicol. 2020, 39, 127–144. [Google Scholar]
- Wang, W.H.; Lin, W.S.; Shih, C.H.; Chen, C.Y.; Kuo, S.H.; Li, W.L.; Lin, Y.S. Functionality of silk cocoon (Bombyx mori l.) sericin extracts obtained through high-temperature hydrothermal method. Materials 2021, 14, 5314. [Google Scholar] [CrossRef]
- Camargo, F.B.; Minami, M.M.; Rossan, M.R.; Magalhães, W.V.; Ferreira, V.T.P.; Campos, P.M.B.G.M. Prevention of chemically induced hair damage by means of treatment based on proteins and polysaccharides. J. Cosmet. Dermatol. 2022, 21, 827–835. [Google Scholar]
- He, M.; Hu, H.; Wang, P.; Fu, H.; Yuan, J.; Wang, Q.; Fan, X. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization. Int. J. Biol. Macromol. 2018, 117, 323–330. [Google Scholar]
- Hu, H.; Wang, L.; Xu, B.; Wang, P.; Yuan, J.; Yu, Y.; Wang, Q. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2643–2655. [Google Scholar] [CrossRef]
Extraction Method | Approach | Advantages | Limitations | Ref.(s) |
---|---|---|---|---|
Conventional | Detergents/soaps (e.g., Marseille) and sodium bicarbonate | Effective | Sericin is highly degraded Sericin recovery is difficult It is not environment-friendly/effluent problems | [49] |
Chemical | Alkaline solutions (e.g., sodium carbonate, sodium phosphate, sodium silicate, and sodium hydrosulfite) | Quick Low-cost Efficient | Sericin is degraded Sericin recovery is difficult Purification steps are needed It is not environment-friendly/effluent problems | [28,49] |
Acidic solutions (e.g., citric, tartaric, succinic acid). | Sericin is less degraded than when using alkaline solutions | Sericin is degraded Not efficient Purification steps are needed It is not environment-friendly/effluent problems | [28,49] | |
Urea (with or without mercaptoethanol) | Effective Time-consuming Sericin is poorly degraded | Purification steps are needed to remove the chemical impurities Toxic to cells | [28,49] | |
Enzymatic | Proteolytic enzymes (e.g., bromelain, pancreatin, alcalase, savinase, degummase, papain, trypsin, etc.) | Effective Environment-friendly/no effluent problems | Expensive Sericin is degraded Time-consuming | [28,49,50] |
Heat | Boiled in water (associated or not with high pressure by autoclaving) | Simple Low-cost Time-consuming No purification steps needed Environment-friendly/no effluent problems | Sericin is degraded (when used at high temperatures) Damages fibroin Removes only the outer layer of sericin | [28,49] |
Extraction Method | Secondary Structure (%) | |||
---|---|---|---|---|
α-Helix | β-Sheet | Turns | Random Coils | |
Conventional | 28.8 | 0.0 | 35.1 | 36.1 |
Heat (boiling in water) | 0.0 | 56.2 | 2.5 | 41.3 |
Urea-degradation | 2.8 | 54.5 | 4.0 | 38.7 |
Alkali-degradation | 28.5 | 0.0 | 33.8 | 37.8 |
Acid-degradation | 14.9 | 34.8 | 17.0 | 33.3 |
Amino Acid | Extraction Method | |||
---|---|---|---|---|
Heat | Urea-Degradation | Acid-Degradation | Alkali-Degradation | |
Serine | 33.63 | 31.27 | 31.86 | 30.01 |
Aspartic acid | 15.64 | 18.31 | 15.93 | 19.88 |
Glutamic acid | 4.61 | 5.27 | 5.75 | 5.93 |
Glycine | 15.03 | 11.23 | 10.49 | 11.01 |
Histidine | 1.06 | 3.26 | 2.47 | 1.72 |
Arginine | 2.87 | 5.41 | 4.92 | 4.92 |
Threonine | 8.16 | 8.36 | 8.51 | 6.49 |
Valine | 2.88 | 2.96 | 2.95 | 2.94 |
Methionine | 3.39 | 0.12 | 0.06 | 0.15 |
Lysine | 2.35 | 3.14 | 3.48 | 2.89 |
Isoleucine | 0.56 | 0.96 | 0.87 | 0.75 |
Leucine | 1.00 | 1.58 | 1.43 | 1.56 |
Phenylalanine | 0.28 | 0.60 | 0.71 | 0.81 |
Extraction Method | Total Phenol Content (mg GAE/10 g) | Total Flavonoid Content (mg CE/10 g) |
---|---|---|
Conventional | 253.40 ± 9.10 | 328.79 ± 47.81 |
Heat (boiling in water) | 319.40 ± 5.70 | 381.00 ± 47.45 |
Urea-degradation | 200.23 ± 13.50 | 539.93 ± 46.8 |
Alkali-degradation | 257.73 ± 12.00 | 210.01 ± 30.09 |
Acid-degradation | 256.07 ± 12.37 | 708.80 ± 54.49 |
Polymer | Origin | Advantages | Disadvantages | Ref.(s) |
---|---|---|---|---|
Agarose | Purified from agar that is obtained from red seaweed (e.g., Ahnfeltia plicata, Gelidium amansii, Eucheuma) | Biocompatible Non-immunogenic Thermo-reversible behavior Easy gelling Inexpensive | Soluble only at high temperatures Low cell adhesion Poorly-degradable in humans | [83,86] |
Alginate | Brown seaweed (e.g., Laminaria, Macrocystis, Ascophyllum) | Biocompatible Easy chemical modification Easy gelling Inexpensive | Poorly-degradable in humans Sterilization causes degradation Low cell adhesion Weak mechanical strength. | [83,86,87] |
Cellulose | Plants and bacteria | Biocompatible Good mechanical strength Porous stable matrix Inexpensive | Poorly-degradable in humans | [83,88,89] |
Chitosan | Deacetylation of chitin that is obtained from crustacean exoskeletons, insects and fungal cell walls | Biocompatible Biodegradable Non-toxic Non-antigenic Non-allergenic Bioactive Inexpensive | Immunogenic Non-soluble at physiological pH Low long-term stability Weak mechanical strength | [87,88,89,90] |
Collagen | Connective tissue (e.g., cartilage, bones, tendons, ligaments and skin) | Biocompatible Biodegradable Non-toxic Non-antigenic Non-immunogenic Bioactive Native ECM protein | Viral contamination Low stability Sterilization causes degradation Weak mechanical strength Expensive | [86,88,89] |
Fibrin | Converted from fibrinogen that is obtained from blood serum | Biocompatible Biodegradable Non-immunogenic Native ECM protein Bioactive | Viral contamination Rapid degradation Weak mechanical strength | [83,91] |
Fibroin | Silk of different animals (e.g., spiders (Nephila clavipes and Araneus diadematus), silkworms (B. mori, Antheraea pernyi and Samia cynthia ricini)) | Biocompatible Biodegradable Bioactive Good mechanical strength Thermostable | Non-soluble in water Expensive | [37,83,91,92,93] |
Gelatin | Degraded collagen that is obtained from connective tissue | Biocompatible Biodegradable Non-immunogenic Poorly-antigenic Bioactive Thermal crosslinking Easy gelling | Rapid degradation Weak mechanical strength | [83,87,91] |
Hyaluronic acid | ECM of the connective tissue (e.g., cartilage, bones, tendons, ligaments, and skin), synovial fluid and other tissues | Biocompatible Biodegradable Non-immunogenic Native ECM protein Bioactive | Viral contamination Rapid degradation Weak mechanical strength Expensive | [83,86,87] |
Keratin | Hair, nails, horn, hoofs, wool and feathers | Biocompatible Biodegradable Bioactive | Weak mechanical strength | [83,93,94] |
Sericin | Silk of different animals (e.g., spiders (Nephila clavipes and Araneus diadematus), silkworms (B. mori, Antheraea pernyi and Samia cynthia ricini)) | Biocompatible Biodegradable Bioactive Thermo-reversible behavior/easy gelling | Weak mechanical strength | [12,37,83] |
ECM—extracellular matrix |
Industry | Applications |
---|---|
Biomedical and pharmaceutical | Supplement in culture media Antitumor activity Metabolic effects (in the gastrointestinal tract, in the circulatory and immune systems, on lipid metabolism and obesity) Tissue engineering Wound healing Drug delivery Contact lenses Matrix for implants Vehicle for cell amplification Stabilizer in vaccines Skincare: skin elasticity, anti-wrinkle and anti-aging influences, UV protection impact Nailcare: prevents cracks and brittleness, and raises the inherent brightness Haircare: conditioner; prevents hair damage Gel: moisturizing property |
Food | To enhance the taste and touch of porridge Prevents browning reactions in a variety of ingredients Antioxidants Mineral absorption is accelerated Additive as a nutrient |
Textile | In fabrics to absorb moisture Cleaning fabrics Improved antibacterial activity Fabricated nanofiber UV protection of textiles Medical textiles Nanofibers |
Others | Treating industrial wastewater with adsorptive pollutants Air filter products Anti-frosting agent for roads and roofs Artificial leather products Roads and roofs Art pigments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931. https://doi.org/10.3390/polym14224931
Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers. 2022; 14(22):4931. https://doi.org/10.3390/polym14224931
Chicago/Turabian StyleSilva, Andreia S., Elisabete C. Costa, Sara Reis, Carina Spencer, Ricardo C. Calhelha, Sónia P. Miguel, Maximiano P. Ribeiro, Lillian Barros, Josiana A. Vaz, and Paula Coutinho. 2022. "Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications" Polymers 14, no. 22: 4931. https://doi.org/10.3390/polym14224931
APA StyleSilva, A. S., Costa, E. C., Reis, S., Spencer, C., Calhelha, R. C., Miguel, S. P., Ribeiro, M. P., Barros, L., Vaz, J. A., & Coutinho, P. (2022). Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers, 14(22), 4931. https://doi.org/10.3390/polym14224931