Influence of the Type of Binder Used in the Treatment of Cotton Fabric with Montmorillonite Particles on the Release of Negative Ions
Abstract
:1. Introduction
2. Materials and Methods
- = whiteness index value
- = tristimulus value for the sample
- = the colour coordinates
3. Results
3.1. MMT Characterization
3.2. Whiteness Index
3.3. Ion Count
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, S.-Y.; Ma, A.; Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, V.; Alexander, D.D.; Bailey, W.H. Air ions and mood outcomes: A review and meta-analysis. BMC Psychiatry 2013, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.S.; Qiu, B.; Li, Q.S. The research of negative ion test method for fabric. Adv. Mater. Res. 2013, 756, 138–140. [Google Scholar] [CrossRef]
- Bou-Belda, E.; Bonet-Aracil, M.; Montava, I.; Gisbert-Payà, J. Evaluation of negative ion generation on polyester fabrics to improve well-being. AIP Conf. Proc. 2022, 2430, 070009. [Google Scholar]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.W.; Schulthess, C.P.; Co, K.; Sahoo, S.; Alpay, S. Influence of octahedral cation distribution in montmorillonite on interlayer hydrogen counter-ion retention strength via first-principles calculations. Clays Clay Min. 2019, 67, 439–448. [Google Scholar] [CrossRef]
- Krupskaya, V.V.; Zakusin, S.V.; Tyupina, E.A.; Dorzhieva, O.V.; Chernov, M.S.; Bychkova, Y.V. Transformation of structure and adsorption properties of montmorillonite under thermochemical treatment. Geochem. Int. 2019, 57, 314–330. [Google Scholar] [CrossRef]
- Eid, B.M.; El-Sayed, G.M.; Ibrahim, H.M.; Habib, N.H. Durable antibacterial functionality of cotton/polyester blended fabrics using antibiotic/MONPs composite. Fibers Polym. 2019, 20, 2297–2309. [Google Scholar] [CrossRef]
- Allehyani, E.S.; Almulaiky, Y.Q.; Al-Harbi, S.A.; El-Shishtawy, R.M. In Situ Coating of Polydopamine-AgNPs on Polyester Fabrics Producing Antibacterial and Antioxidant Properties. Polymers 2022, 14, 3794. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Bossog, L.; Hager, T.; Wunderlich, W.; Breier, R.; Stegmaier, T.; Zibek, S. Chitosan application in textile processing and fabric coating. In Chitin and Chitosan: Properties and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 395–428. [Google Scholar]
- Ibrahim, N.A.; Eid, B.M.; Abou Elmaaty, T.M.; Abd El-Aziz, E. A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr. Polym. 2013, 94, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Bhattacharyya, A. Nanotechnology— A new route to high-performance functional textiles. Text. Prog. 2011, 43, 155–233. [Google Scholar] [CrossRef]
- Vílchez-Maldonado, S.; Calderó, G.; Esquena, J.; Molina, R. UV protective textiles by the deposition of functional ethylcellulose nanoparticles. Cellulose 2014, 21, 2133–2145. [Google Scholar] [CrossRef]
- Radetić, M. Functionalization of textile materials with silver nanoparticles. J. Mater. Sci. 2013, 48, 95–107. [Google Scholar] [CrossRef]
- Jun, B.H. Silver nano/microparticles: Modification and applications. Int. J. Mol. Sci. 2019, 20, 2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Liu, J.; Zeng, L.; Ai, L.; Liu, P. Preparation and Characterization of Cyclodextrin Coated Red Phosphorus Double− Shell Microcapsules and Its Application in Flame Retardant Polyamide 6. Polymers 2022, 14, 4101. [Google Scholar] [CrossRef]
- Yuen, C.W.M.; Kan, C.W.; Lee, H.L. Improving wrinkle resistance of cotton fabric by montmorillonite. Fibers Polym. 2006, 7, 139–145. [Google Scholar] [CrossRef]
- Bhuyan, P.; Bhuyan, A.J.; Gogoi, P.J.; Mahanta, A.; Tamuly, C.; Saikia, L. Pd–NPs@ MMT–K10 Catalysis of Suzuki–Miyaura Cross-coupling Reaction: In Situ Generation and Ex Situ Use. Catal. Lett. 2022, 152, 2705–2715. [Google Scholar] [CrossRef]
- Thomas, S.D.J. Polyurethane Polymers: Composites and Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bujdak, H.S.J.; Slosiariková, H.; Číčel, B. Interaction of Long Chain Alkylammonium Cations with Reduced Charge Montmorillonite. J. Incl. Phenom. Macrocycl. Chem. 1992, 13, 321–327. [Google Scholar] [CrossRef]
- Tone, K.; Shibasaki, Y.; Takeda, Y.; Yamamoto, O. Effect of the surface potential in the cation exchange capacity of kaolin minerals. Clay Sci. 1998, 10, 327–335. [Google Scholar]
Silicate Particle | Size Range (µm) | Surface Area (m2/g) |
---|---|---|
MMT K10 | 1–40 | 220–270 |
MMT KSF | 1–90 | 20–40 |
Sample | MMT | MMT Concentration (g/L) | Binder | Binder Concentration (g/L) |
---|---|---|---|---|
1 PUR | - | - | Polyurethane | 1 |
2.5 PUR | - | - | Polyurethane | 2.5 |
5 PUR | - | - | Polyurethane | 5 |
20K10 1 PUR | K10 | 20 | Polyurethane | 1 |
20K10 2.5 PUR | K10 | 20 | Polyurethane | 2.5 |
20K10 5 PUR | K10 | 20 | Polyurethane | 5 |
20KSF 1 PUR | KSF | 20 | Polyurethane | 1 |
20KSF 2.5 PUR | KSF | 20 | Polyurethane | 2.5 |
20KSF 5 PUR | KSF | 20 | Polyurethane | 5 |
1 AC | - | - | Acrylic | 1 |
2.5 AC | - | - | Acrylic | 2.5 |
5 AC | - | - | Acrylic | 5 |
20K10 1 AC | K10 | 20 | Acrylic | 1 |
20K10 2.5 AC | K10 | 20 | Acrylic | 2.5 |
20K10 5 AC | K10 | 20 | Acrylic | 5 |
20KSF 1 AC | KSF | 20 | Acrylic | 1 |
20KSF 2.5 AC | KSF | 20 | Acrylic | 2.5 |
20KSF 5 AC | KSF | 20 | Acrylic | 5 |
*L | *a | *b | ΔEab | |
---|---|---|---|---|
Untreated cotton | 92.6151 | −0.3076 | 3.6025 | |
1 PUR | 92.8554 | −0.3019 | 3.2629 | 0.4161 |
2.5 PUR | 92.8842 | −0.2419 | 3.3100 | 0.4028 |
5 PUR | 92.9384 | −0.3024 | 2.9786 | 0.7027 |
20K10 1 PUR | 92.7023 | −0.2957 | 4.6318 | 1.0331 |
20K10 2.5 PUR | 92.4468 | −0.2773 | 3.9199 | 0.3598 |
20K10 5 PUR | 92.4668 | −0.2209 | 4.0816 | 0.5090 |
20KSF 1 PUR | 89.6774 | 0.1940 | 8.0724 | 5.3723 |
20KSF 2.5 PUR | 90.2379 | 0.0954 | 7.1682 | 4.3044 |
20KSF 5 PUR | 90.6665 | 0.1442 | 7.8069 | 4.6560 |
1 Ac | 92.7645 | −0.2082 | 3.3649 | 0.2977 |
2.5 Ac | 92.9828 | −0.3589 | 3.1566 | 0.5802 |
5 Ac | 92.6826 | −0.3038 | 3.1462 | 0.4613 |
20K10 1 Ac | 92.3274 | −0.1925 | 4.1027 | 0.5884 |
20K10 2.5 Ac | 92.4160 | −0.2220 | 4.2551 | 0.6876 |
20K10 5 Ac | 92.9831 | −0.2681 | 4.0742 | 0.5996 |
20KSF 1 Ac | 90.6885 | 0.1031 | 7.7154 | 4.5603 |
20KSF 2.5 Ac | 90.1750 | 0.0971 | 7.7494 | 4.8285 |
20KSF 5 Ac | 90.6885 | 0.1003 | 7.6528 | 4.5037 |
20K10 | 92.4903 | −0.2288 | 4.3796 | 0.7910 |
20KSF | 90.8828 | 0.1081 | 7.5836 | 4.3615 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carette, M.; Gisbert-Payá, J.; Capablanca, L.; Bou-Belda, E. Influence of the Type of Binder Used in the Treatment of Cotton Fabric with Montmorillonite Particles on the Release of Negative Ions. Polymers 2022, 14, 4945. https://doi.org/10.3390/polym14224945
Carette M, Gisbert-Payá J, Capablanca L, Bou-Belda E. Influence of the Type of Binder Used in the Treatment of Cotton Fabric with Montmorillonite Particles on the Release of Negative Ions. Polymers. 2022; 14(22):4945. https://doi.org/10.3390/polym14224945
Chicago/Turabian StyleCarette, Margaux, Jaime Gisbert-Payá, Lucía Capablanca, and Eva Bou-Belda. 2022. "Influence of the Type of Binder Used in the Treatment of Cotton Fabric with Montmorillonite Particles on the Release of Negative Ions" Polymers 14, no. 22: 4945. https://doi.org/10.3390/polym14224945
APA StyleCarette, M., Gisbert-Payá, J., Capablanca, L., & Bou-Belda, E. (2022). Influence of the Type of Binder Used in the Treatment of Cotton Fabric with Montmorillonite Particles on the Release of Negative Ions. Polymers, 14(22), 4945. https://doi.org/10.3390/polym14224945