Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Biobased Hydroxyl-Terminated Oligomers (Biobased HTPB) via Metathesis Degradation from SBS or PB
2.3. Catalyst Optimization for the Synthesis of Biobased HTPB Oligomers by Metathesis Degradation
2.4. Measurements and Characterizations
3. Results and Discussion
3.1. Synthesis of Biobased Hydroxyl-Terminated Oligomers via Metathesis Degradation from Poly(styrene-butadiene-styrene)
3.2. FT-IR and NMR Analysis
3.3. Molecular Weight Analysis by GPC
3.4. Thermal Properties by TGA and DTG
3.5. Catalyst Optimization for the Synthesis of Biobased HTPB via Metathesis Degradation from PB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akyüz, S.; Darı, M.E.; Esiyok, Y.E.; Ermeydan, M.A. Effects of NR/SBR Ratio on Mechanical Properties and Artificial Mechanical Performance of Anti-Vibration Bushings. Iran. Polym. J. 2021, 30, 1317–1328. [Google Scholar] [CrossRef]
- Kanny, K.; Mohan, T.P. Rubber Nanocomposites with Nanoclay as the Filler. Prog. Rubber Nanocompos. 2017, 5, 153–177. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Boonkerd, K.; Zhang, Z.; Kim, J.K. Formation of Bio-Based Elastomer from Styrene-Butadiene Copolymer and Epoxidized Soybean Oil. J. Polym. Res. 2014, 21, 404. [Google Scholar] [CrossRef]
- Akbas, A.; Yuhana, N.Y. Recycling of Rubber Wastes as Fuel and Its Additives. Recycling 2021, 6, 78. [Google Scholar] [CrossRef]
- Ceresana 2022© Market Report: Synthetic Rubber (E-SBR, S-SBR, BR, EPDM, IIR, NBR, CR & IR). 2022. Available online: https://www.ceresana.com/en/market-studies/plastics/synthetic-rubber/market-study-synthetic-rubber.html442 (accessed on 5 October 2022).
- Sazali, N.; Ibrahim, H.; Jamaludin, A.S.; Mohamed, M.A.; Salleh, W.N.W.; Abidin, M.N.Z. Degradation and Stability of Polymer: A Mini Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 788, 012048. [Google Scholar] [CrossRef]
- Nikolaivits, E.; Pantelic, B.; Azeem, M.; Taxeidis, G.; Babu, R.; Topakas, E.; Brennan Fournet, M.; Nikodinovic-Runic, J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)Valorization. Front. Bioeng. Biotechnol. 2021, 9, 696040. [Google Scholar] [CrossRef]
- Gupte, S.L.; Madras, G. Catalytic Degradation of Polybutadiene. Polym. Degrad. Stab. 2004, 86, 529–533. [Google Scholar] [CrossRef]
- Chakraborty, J.; Sarkar, J.; Kumar, R.; Madras, G. Ultrasonic Degradation of Polybutadiene and Isotactic Polypropylene. Polym. Degrad. Stab. 2004, 85, 555–558. [Google Scholar] [CrossRef]
- Chen, F.; Qian, J. Studies on the Thermal Degradation of Polybutadiene. Fuel Process. Technol. 2000, 67, 53–60. [Google Scholar] [CrossRef]
- Radhakrishnan, C.K.; Alex, R.; Unnikrishnan, G. Thermal, Ozone and Gamma Ageing of Styrene Butadiene Rubber and Poly(Ethylene-Co-Vinyl Acetate) Blends. Polym. Degrad. Stab. 2006, 91, 902–910. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Li, J.; Hassan, A.A.; Wang, S. Accelerated Liquefaction of Vulcanized Natural Rubber by Thermo-Oxidative Degradation. Polym. Bull. 2022, 79, 1767–1786. [Google Scholar] [CrossRef]
- Chittella, H.; Yoon, L.W.; Ramarad, S.; Lai, Z.W. Rubber Waste Management: A Review on Methods, Mechanism, and Prospects. Polym. Degrad. Stab. 2021, 194, 109761. [Google Scholar] [CrossRef]
- Olejnik, T.P.; Pietras, M.; Sielski, J.; Śliżewska, K.; Sobiecka, E. The Process of Natural and Styrene–Butadiene Rubbers Biodegradation by Lactobacillus Plantarum. Appl. Sci. 2022, 12, 5148. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, T.; Zou, T.T.; Rempel, G.L.; Pan, Q.M. A Novel Approval for Degradation of Polybutadiene and Synthesis of Diene-Based Telechelic Oligomers via Olefin Cross Metathesis. Macromol. React. Eng. 2015, 9, 480–489. [Google Scholar] [CrossRef]
- Pan, C.; Liu, P. Fluorinated Nitrile-Butadiene Rubber (F-NBR) via Metathesis Degradation: Closed System or Open System? Eur. Polym. J. 2022, 162, 110886. [Google Scholar] [CrossRef]
- Reyes-Gómez, S.; Montiel, R.; Tlenkopatchev, M.A. Chicle Gum from Sapodilla (Manilkara zapota) as a Renewable Resource for Metathesis Transformations. J. Mex. Chem. Soc. 2018, 62, 1–15. [Google Scholar] [CrossRef]
- Martínez, A.; Tlenkopatchev, M.A.; Gutiérrez, S.; Burelo, M.; Vargas, J.; Jiménez-Regalado, E. Synthesis of Unsaturated Esters by Cross-Metathesis of Terpenes and Natural Rubber Using Ru-Alkylidene Catalysts. Curr. Org. Chem. 2019, 23, 1356–1364. [Google Scholar] [CrossRef]
- Burelo, M.; Martínez, A.; Cruz-Morales, J.A.; Tlenkopatchev, M.A.; Gutiérrez, S. Metathesis Reaction from Bio-Based Resources: Synthesis of Diols and Macrodiols Using Fatty Alcohols, β-Citronellol and Natural Rubber. Polym. Degrad. Stab. 2019, 166, 202–212. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Benitez, D.; Morita, T.; Grubbs, R.H. Synthesis of End-Functionalized Poly (Norbornene) s via Ring-Opening Metathesis Polymerization. Macromolecules 2001, 34, 8610–8618. [Google Scholar] [CrossRef] [Green Version]
- Sedransk, K.L.; Kaminski, C.F.; Hutchings, L.R.; Moggridge, G.D. The Metathetic Degradation of Polyisoprene and Polybutadiene in Block Copolymers Using Grubbs Second Generation Catalyst. Polym. Degrad. Stab. 2011, 96, 1074–1080. [Google Scholar] [CrossRef]
- Soares, F.A.; Steinbüchel, A. Natural Rubber Degradation Products: Fine Chemicals and Reuse of Rubber Waste. Eur. Polym. J. 2022, 165, 111001. [Google Scholar] [CrossRef]
- Zhou, Q.; Jie, S.; Li, B.G. Preparation of Hydroxyl-Terminated Polybutadiene with High Cis-1,4 Content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893. [Google Scholar] [CrossRef]
- Chen, J.M.; Lu, Z.J.; Pan, G.Q.; Qi, Y.X.; Yi, J.J.; Bai, H.J. Synthesis of Hydroxyl-Terminated Polybutadiene Possessing High Content of 1,4-Units VIA Anionic Polymerization. Chin. J. Polym. Sci. 2010, 28, 715–720. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, Y.; Liu, N.; Lu, X.; Shu, Y.; Wang, X.; Mo, H.; Xu, M. Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of These Modifiers in Propellants and Explosives. Cent. Eur. J. Energetic Mater. 2019, 16, 153–193. [Google Scholar] [CrossRef]
- Shahzamani, M.; Bagheri, R.; Bahramian, A.R.; Masoomi, M. Preparation and Characterization of Hybrid Aerogels from Novolac and Hydroxyl-Terminated Polybutadiene. J. Mater. Sci. 2016, 51, 7861–7873. [Google Scholar] [CrossRef]
- Kreye, O.; Mutlu, H.; Meier, M.A.R. Sustainable Routes to Polyurethane Precursors. Green Chem. 2013, 15, 1431–1455. [Google Scholar] [CrossRef]
- Chen, G.; Liang, Y.; Xiang, D.; Wen, S.; Liu, L. Relationship between Microstructure and Dielectric Property of Hydroxyl-Terminated Butadiene–Acrylonitrile Copolymer-Based Polyurethanes. J. Mater. Sci. 2017, 52, 10321–10330. [Google Scholar] [CrossRef]
- Sundang, M.; Nurdin, N.S.; Saalah, S.; Singam, Y.J.; Al Edrus, S.S.O.; Ismail, N.M.; Sipaut, C.S.; Abdullah, L.C. Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion. Polymers 2022, 14, 3715. [Google Scholar] [CrossRef]
- Burelo, M.; Gaytán, I.; Loza-Tavera, H.; Cruz-Morales, J.A.; Zárate-Saldaña, D.; Cruz-Gómez, M.J.; Gutiérrez, S. Synthesis, Characterization and Biodegradation Studies of Polyurethanes: Effect of Unsaturation on Biodegradability. Chemosphere 2022, 307, 136136. [Google Scholar] [CrossRef]
- Hoong, S.S.; Yeong, S.K.; Hassan, H.A.; Din, A.K.; Choo, Y.M. Synthesis and Characterization of Polyurethanes Made from Copolymers of Epoxidized Natural Oil and Tetrahydrofuran. J. Oleo Sci. 2015, 64, 101–115. [Google Scholar] [CrossRef]
- Peyrton, J.; Chambaretaud, C.; Sarbu, A.; Avérous, L. Biobased Polyurethane Foams Based on New Polyol Architectures from Microalgae Oil. ACS Sustain. Chem. Eng. 2020, 8, 12187–12196. [Google Scholar] [CrossRef]
- Fonseca, L.R.; Bergman, J.A.; Kessler, M.R.; Madbouly, S.A.; Lima-Neto, B.S. Self-Metathesis of 10-Undecen-1-Ol with Ru-Amine-Based Complex for Preparing the Soft Segment and Chain Extender of Novel Castor Oil-Based Polyurethanes. Macromol. Symp. 2016, 368, 30–39. [Google Scholar] [CrossRef]
- Sardon, H.; Mecerreyes, D.; Basterretxea, A.; Avérous, L.; Jehanno, C. From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustain. Chem. Eng. 2021, 9, 10664–10677. [Google Scholar] [CrossRef]
- Firdaus, M.; Montero De Espinosa, L.; Meier, M.A.R. Terpene-Based Renewable Monomers and Polymers via Thiol-Ene Additions. Macromolecules 2011, 44, 7253–7262. [Google Scholar] [CrossRef]
- Saha, P.; Khomlaem, C.; Aloui, H.; Kim, B.S. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-Hydroxybutyrate). Polymers 2021, 13, 1387. [Google Scholar] [CrossRef] [PubMed]
- Gaytán, I.; Sánchez-Reyes, A.; Burelo, M.; Vargas-Suárez, M.; Liachko, I.; Press, M.; Sullivan, S.; Cruz-Gómez, M.J.; Loza-Tavera, H. Degradation of Recalcitrant Polyurethane and Xenobiotic Additives by a Selected Landfill Microbial Community and Its Biodegradative Potential Revealed by Proximity Ligation-Based Metagenomic Analysis. Front. Microbiol. 2020, 10, 2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, A.; Zuniga-Villarreal, N.; Gutierrez, S.; Tlenkopatchev, M.A. New Ru-Vinylidene Catalysts in the Cross-Metathesis of Natural Rubber and Poly(Styrene-Co-Butadiene) with Essential Oils. Curr. Org. Synth. 2016, 13, 876–882. [Google Scholar] [CrossRef]
- Hu, G.; Lin, S.; Zhao, B.; Pan, Q. Synthesis and Characterization of Natural Rubber-Based Telechelic Oligomers via Olefin Metathesis. J. Appl. Polym. Sci. 2020, 49899, e49899. [Google Scholar] [CrossRef]
- De Vasconcelos Vieira Lopes, R.; Loureiro, N.P.D.; Pezzin, A.P.T.; Gomes, A.C.M.; Resck, I.S.; Sales, M.J.A. Synthesis of Polyols and Polyurethanes from Vegetable Oils-Kinetic and Characterization. J. Polym. Res. 2013, 20, 238. [Google Scholar] [CrossRef]
- Astruc, D. The Metathesis Reactions: From a Historical Perspective to Recent Developments. New J. Chem. 2005, 29, 42–56. [Google Scholar] [CrossRef]
- Fomine, S.; Tlenkopatchev, M.A. Computational Modeling of Renewable Molecules. Ruthenium Alkylidene-Mediated Metathesis of Trialkyl-Substituted Olefins. Organometallics 2010, 29, 1580–1587. [Google Scholar] [CrossRef]
Entry | [SBS]/[CTA] b (mol/mol) | MW Theoretical (g/mol) | Molecular Weight c (g/mol) | Yield d (%) | Thermal Properties (TGA) (°C) | |||
---|---|---|---|---|---|---|---|---|
Mn | Mw | PDI | Td (5%) | Td (50%) | ||||
SBS a | 170,000 | 255,000 | 1.5 | |||||
SBS1 | 1:1 | 366 | 583 ± 65 | 950 ± 80 | 1.63 ± 0.05 | 94 ± 1.00 | 134 | 400 |
SBS2 | 10:1 | 852 | 880 ± 20 | 1730 ± 26 | 1.96 ± 0.05 | 96 ± 1.15 | 147 | 424 |
SBS3 | 20:1 | 1392 | 1593 ± 40 | 3344 ± 125 | 2.10 ± 0.10 | 97 ± 0.57 | 152 | 427 |
SBS4 | 50:1 | 3012 | 3583 ± 76 | 9436 ± 313 | 2.63 ± 0.05 | 98 ± 0.57 | 158 | 429 |
Entry | [PB]/[CTA] b (mol/mol) | Molar Ratio c [C=C]/[Ru] (mol/mol) | Catalyst Moles (mmol) | MW Theoretical (g/mol) | Molecular Weight d (g/mol) | Yield (%) e | Thermal Properties (TGA, °C) | |||
---|---|---|---|---|---|---|---|---|---|---|
Mn | Mw | PDI | Td(5%) | Td(50%) | ||||||
PB a | 910,000 | 2,002,000 | 2.2 | |||||||
PB1 | 1:1 | 500:1 | 0.2220 | 366 | 643 ± 21 | 1115 ± 58 | 1.73 ± 0.05 | 94 ± 1.00 | 136 | 402 |
PB2 | 10:1 | 500:1 | 0.1222 | 852 | 873 ± 35 | 1658 ± 74 | 1.90 ± 0.10 | 96 ± 1.15 | 150 | 404 |
PB3 | 100:1 | 500:1 | 0.1120 | 5712 | 6580 ± 396 | 14,459 ± 662 | 2.20 ± 0.10 | 98 ± 0.57 | 220 | 430 |
PB4 | 10:1 | 1000:1 | 0.0611 | 852 | 942 ±17 | 1916 ± 87 | 2.00 ± 0.05 | 96 ± 0.57 | 142 | 423 |
PB5 | 10:1 | 2000:1 | 0.0305 | 852 | 997 ± 15 | 2491 ± 95 | 2.50 ± 0.10 | 97 ± 1.15 | 147 | 424 |
PB6 | 10:1 | 5000:1 | 0.0122 | 852 | 1060 ± 40 | 2789 ± 64 | 2.60 ± 0.11 | 98 ± 0.57 | 151 | 426 |
PB7 | 10:1 | 10,000:1 | 0.0061 | 852 | 1753 ± 42 | 4385 ± 263 | 2.50 ± 0.10 | 98 ± 0.57 | 156 | 427 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burelo, M.; Gutiérrez, S.; Treviño-Quintanilla, C.D.; Cruz-Morales, J.A.; Martínez, A.; López-Morales, S. Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers 2022, 14, 4973. https://doi.org/10.3390/polym14224973
Burelo M, Gutiérrez S, Treviño-Quintanilla CD, Cruz-Morales JA, Martínez A, López-Morales S. Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers. 2022; 14(22):4973. https://doi.org/10.3390/polym14224973
Chicago/Turabian StyleBurelo, Manuel, Selena Gutiérrez, Cecilia D. Treviño-Quintanilla, Jorge A. Cruz-Morales, Araceli Martínez, and Salvador López-Morales. 2022. "Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols" Polymers 14, no. 22: 4973. https://doi.org/10.3390/polym14224973
APA StyleBurelo, M., Gutiérrez, S., Treviño-Quintanilla, C. D., Cruz-Morales, J. A., Martínez, A., & López-Morales, S. (2022). Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers, 14(22), 4973. https://doi.org/10.3390/polym14224973