Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WBPUU/CNC Nanocomposite-Based Inks
2.3. DIW 3D Printing of the Inks and Scaffold Preparation by Freeze-Drying
2.4. Characterization
3. Results and Discussion
3.1. Influence of the CaCl2 Immersion of the WBPUU/CNC Inks
3.2. Characterization of the WBPU/CNC Prepared Scaffolds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Q.; Saiz, E.; Tomsia, A.P. Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-Bearing Bone Defects Repair and Regeneration. Acta Biomater. 2012, 7, 3547–3554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Mater. Adv. 2021, 2, 540–563. [Google Scholar] [CrossRef]
- Kang, H.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.; Peters, B.; Burger, T.J.; Boomstra, J.; Dhert, W.J.A.; Melchels, F.P.W.; Malda, J. Biofabrication of Multi-Material Anatomically Shaped Tissue Constructs. Biofabrication 2013, 5, 035007. [Google Scholar] [CrossRef]
- Zhang, B.; Chung, S.H.; Barker, S.; Craig, D.; Narayan, R.J.; Huang, J. Direct Ink Writing of Polycaprolactone / Polyethylene Oxide Based 3D Constructs. Prog. Nat. Sci. Mater. Int. 2021, 31, 180–191. [Google Scholar] [CrossRef]
- Li, L.; Lin, Q.; Tang, M.; Duncan, A.J.E.; Ke, C. Advanced Polymer Designs for Direct-Ink-Write 3D Printing. Chem. A Eur. J. 2019, 25, 10768–10781. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Luo, L.; Liu, Y.; Leng, J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv. Sci. 2020, 7, 2001000. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.A.; Smay, J.E. Direct Ink Writing of Three-Dimensional Ceramic Structures. J. Am. Ceram. Soc. 2006, 89, 3599–3609. [Google Scholar] [CrossRef]
- Farahani, R.D.; Dubé, M.; Therriault, D. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv. Mater. 2016, 28, 5794–5821. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, H.; Ajdary, R.; Trifol, J.; Rojas, O.J.; Seppälä, J. Direct Ink Writing of Aloe Vera/Cellulose Nanofibrils Bio-Hydrogels. Carbohydr. Polym. 2021, 266, 118114. [Google Scholar] [CrossRef] [PubMed]
- Corker, A.; Ng, H.C.; Garcı, E.; Poole, R.J. 3D Printing with 2D Colloids: Designing Rheology Protocols to Predict Printability of Sof-Materials. Soft Matter. 2019, 15, 1444–1456. [Google Scholar] [CrossRef] [Green Version]
- M’Barki, A.; Bocquet, L.; Stevenson, A. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Sci. Rep. 2017, 7, 6017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Huang, C.; Hsu, S. Composites of Waterborne Polyurethane and Cellulose Nanofibers for 3D Printing and Bioapplications. Carbohydr. Polym. 2019, 212, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, K.; Xia, T.; Lan, P.; Xu, H.; Lin, N. Chemical Grafting Fluoropolymer on Cellulose Nanocrystals and Its Rheological Modification to Perfluoropolyether Oil. Carbohydr. Polym. 2022, 276, 118802. [Google Scholar] [CrossRef] [PubMed]
- Vorobiov, V.K.; Sokolova, M.P.; Bobrova, N.V.; Elokhovsky, V.Y.; Smirnov, M.A. Rheological Properties and 3D-Printability of Cellulose Nanocrystals/Deep Eutectic Solvent Electroactive Ion Gels. Carbohydr. Polym. 2022, 290, 119475. [Google Scholar] [CrossRef]
- Teagarden, D.L.; Baker, D.S. Practical Aspects of Lyophilization Using Non-Aqueous Co-Solvent Systems. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2002, 15, 115–133. [Google Scholar] [CrossRef]
- Fereshteh, Z. Freeze-Drying Technologies for 3D Scaffold Engineering. In Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 151–174. ISBN 9780081009802. [Google Scholar]
- Whang, K.; Thomas, C.H.; Healy, K.E. A Novel Method Scaffolds to Fabricate Bioabsorbable Scaffolds. Polymer 1995, 36, 837–842. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, F.; Wang, Z.; Li, J.; Tan, H.; Ding, M.; Fu, Q. Fabrication and Characterization of Waterborne Biodegradable Polyurethanes 3-Dimensional Porous Scaffolds for Vascular Tissue Engineering. J. Biomater. Sci. 2012, 21, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Echart, A.; Fernandes, I.; Barreiro, F.; Corcuera, M.A.; Eceiza, A. Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-Friendly Derivatives: A Review. Polymers 2021, 13, 409. [Google Scholar] [CrossRef]
- Du, B.; Yin, H.; Chen, Y.; Lin, W.; Wang, Y.; Zhao, D.; Wang, G.; He, X.; Li, J.; Li, Z.; et al. A Waterborne Polyurethane 3D Scaffold Containing PLGA with a Controllable Degradation Rate and an Anti-Inflammatory Effect for Potential Applications in Neural Tissue Repair. J. Mater. Chem. B 2020, 8, 4434–4446. [Google Scholar] [CrossRef]
- Lin, W.; Lan, W.; Wu, Y.; Zhao, D.; Wang, Y.; He, X.; Li, J.; Li, Z.; Luo, F.; Tan, H.; et al. Aligned 3D Porous Polyurethane Scaffolds for Biological Anisotropic Tissue Regeneration. Regen. Biomater. 2020, 7, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvert, P. Hydrogels for Soft Machines. Adv. Mater. 2009, 21, 743–756. [Google Scholar] [CrossRef]
- Iviglia, G.; Cassinelli, C.; Torre, E.; Baino, F.; Morra, M.; Vitale-brovarone, C. Novel Bioceramic-Reinforced Hydrogel for Alveolar Bone Regeneration. Acta Biomater. 2016, 44, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Koziol, A.; Costantini, M.; Bolek, T.; Szöke, K.; Barbetta, A.; Brinchmann, J.; Swieszkowski, W. PLA Short Sub-Micron Fiber Reinforcement of 3D Bioprinted Alginate Constructs for Cartilage Regeneration PLA Short Sub-Micron Fi Ber Reinforcement of 3D Bioprinted Alginate Constructs for Cartilage Regeneration. Biofabrication 2017, 9, 044105. [Google Scholar] [CrossRef]
- Shin, S.R.; Bae, H.; Cha, M.; Mun, Y.; Chen, Y.; Tekin, H. Carbon Nanotube Reinforced Hybrid Microgels as Sca Ff Old Materials for Cell. ACS Nano 2012, 6, 362–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedevaite, M.; Gineika, A.; Talacka, V.; Baltakys, K.; Ostrauskaite, J. Development and Optical 3D Printing of Acrylated Epoxidized Soybean Oil-Based Composites with Functionalized Calcium Silicate Hydrate Filler Derived from Aluminium Fluoride Production Waste. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106929. [Google Scholar] [CrossRef]
- Olam, M.; Tosun, N. 3D-Printed Polylactide/Hydroxyapatite/Titania Composite Filaments. Mater. Chem. Phys. 2022, 276, 125267. [Google Scholar] [CrossRef]
- Li, K.; Ding, J.; Guo, Y.; Wu, H.; Wang, W.; Ji, J.; Pei, Q.; Gong, C.; Ji, Z.; Wang, X. Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites. Polymers 2022, 14, 2669. [Google Scholar] [CrossRef]
- Hada, T.; Kanazawa, M.; Miyamoto, N.; Liu, H.; Iwaki, M.; Komagamine, Y.; Minakuchi, S. Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. Int. J. Mol. Sci. 2022, 23, 2296. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G.; et al. 3D Printing for Polymer/Particle-Based Processing: A Review. Compos. B Eng. 2021, 223, 109102. [Google Scholar] [CrossRef]
- Scott, P.J.; Rau, D.A.; Wen, J.; Nguyen, M.; Kasprzak, C.R.; Williams, C.B.; Long, T.E. Polymer-Inorganic Hybrid Colloids for Ultraviolet-Assisted Direct Ink Write of Polymer Nanocomposites. Addit. Manuf. 2020, 35, 101393. [Google Scholar] [CrossRef]
- Hormaiztegui, M.E.V.; Daga, B.; Aranguren, M.I.; Mucci, V. Bio-Based Waterborne Polyurethanes Reinforced with Cellulose Nanocrystals as Coating Films. Prog. Org. Coat 2020, 144, 105649. [Google Scholar] [CrossRef]
- Larraza, I.; Vadillo, J.; Calvo-Correas, T.; Tejado, A.; Martin, L.; Arbelaiz, A. Effect of Cellulose Nanofibers ’ Structure and Incorporation Route in Waterborne Polyurethane—Urea Based Nanocomposite Inks. Polymers 2022, 14, 4516. [Google Scholar] [CrossRef] [PubMed]
- Touchard, F.; Chocinski-Arnault, L.; Fournier, T.; Magro, C.; Lafitte, A.; Caradec, A. Interfacial Adhesion Quality in 3D Printed Continuous CF/PA6 Composites at Filament/Matrix and Interlaminar Scales. Compos. Part B Eng. 2021, 218, 108891. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, M.; Han, W.; Li, P. Waste Office Paper Filled Polylactic Acid Composite Filaments for 3D Printing. Compos. Part B Eng. 2021, 221, 108998. [Google Scholar] [CrossRef]
- Fang, Z.; Tu, Q.; Yang, X.; Shen, X.; Yin, Q.; Chen, Z. Polydopamine and Mercapto Functionalized 3D Carbon Nano-Material Hybrids Synergistically Modifying Aramid Fibers for Adhesion Improvement. Polymers 2022, 14, 3988. [Google Scholar] [CrossRef]
- Jiang, Y.; Plog, J.; Yarin, A.L.; Pan, Y. Direct Ink Writing of Surface-Modified Flax Elastomer Composites. Compos. Part B Eng. 2020, 194. [Google Scholar] [CrossRef]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef]
- Fanucci, D.; Seese, J. Multi-Faceted Use of Calcium Alginates. A Painless, Cost-Effective Alternative for Wound Care Management. Ostomy Wound Manag. 1991, 37, 16–22. [Google Scholar]
- Zhang, M.; Zhao, X. Alginate Hydrogel Dressings for Advanced Wound Management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Nejadnik, M.R.; Yang, X.; Mimura, T.; Birgani, Z.T.; Habibovic, P.; Itatani, K.; Jansen, J.A.; Hilborn, J.; Ossipov, D.; Mikos, A.G.; et al. Calcium-Mediated Secondary Cross-Linking of Bisphosphonated Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. Macromol. Biosci. 2013, 13, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Azizi, M.; Keresztes, I.; Kierulf, A.; Abbaspourrad, A. Nature-Derived Amphiphilic Polymers Crosslinked by Calcium Ions for Microencapsulation Applications. ACS Appl. Polym. Mater. 2021, 3, 1415–1425. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, H.; Xiao, C. Effects of Ca2+ Crosslinking on Structure and Properties of Waterborne Polyurethane-Carboxymethylated Guar Gum Films. Carbohydr. Polym. 2006, 66, 500–513. [Google Scholar] [CrossRef]
- Lin, Y.; Hwang, S.J.; Shih, W.; Chen, K. Development of a Novel Microorganism Immobilization Method Using Anionic Polyurethane. J. Appl. Polym. Sci. 2005, 99, 738–743. [Google Scholar] [CrossRef]
- Vadillo, J.; Larraza, I.; Calvo-Correas, T.; Gabilondo, N.; Derail, C.; Eceiza, A. Role of in Situ Added Cellulose Nanocrystals as Rheological Modulator of Novel Waterborne Polyurethane Urea for 3D-Printing Technology. Cellulose 2021, 6, 4729–4777. [Google Scholar] [CrossRef]
- Vadillo, J.; Larraza, I.; Calvo-correas, T.; Gabilondo, N.; Derail, C.; Eceiza, A. Design of a Waterborne Polyurethane–Urea Ink for Direct Ink Writing 3d Printing. Materials 2021, 14, 3287. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. Microstructural and Mechanical Properties of Porous Biocomposite Scaffolds Based on Polyvinyl Alcohol, Nano-Hydroxyapatite and Cellulose Nanocrystals. Cellulose 2014, 21, 3409–3426. [Google Scholar] [CrossRef]
- Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical Parameters in Designing Segmented Polyurethanes and Their Effect on Morphology and Properties: A Comprehensive Review. Polymer 2015, 58, A1–A36. [Google Scholar] [CrossRef]
- Garrett, J.T.; Xu, R.; Cho, J.; Runt, J. Phase Separation of Diamine Chain-Extended Poly(Urethane) Copolymers: FTIR Spectroscopy and Phase Transitions. Polymer (Guildf) 2003, 44, 2711–2719. [Google Scholar] [CrossRef]
- Ugarte, L.; Fernández-d’Arlas, B.; Valea, A.; González, M.L.; Corcuera, M.A.; Eceiza, A. Morphology–Properties Relationship in High-Renewable Content Polyurethanes. Polym. Eng. Sci. 2014, 54, 2282–2291. [Google Scholar] [CrossRef]
- Yu, Y.J.; Hearon, K.; Wilson, T.S.; Maitland, D.J. The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams. Smart Mater. Struct 2011, 20, 08510. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhan, X.; Luo, Z.; Zhang, Q.; Chen, F. Quantitative IR Characterization of Urea Groups in Waterborne Polyurethanes. J. Polym. Sci. A Polym. Chem. 2008, 46, 2433–2444. [Google Scholar] [CrossRef]
- Haji Badri, K.; Chee Sien, W.; Binti Haji Badri, K.; Shahrom Binti Raja Shahrom, M.; Chi Hao, L.; Yuhana Baderuliksan, N.; Rabbi, N.; Norzali, A. FTIR Spectroscopy Analysis of the Prepolymerization of Palm-Based Polyurethane. Solid State Sci. Technol. 2010, 18, 1–8. [Google Scholar]
- Verma, H.; Kannan, T. Telechelic Multifunctional Polyurethane-Based Macroinitiator for the Synthesis of Polystyrene-Block-Polyurethane-Block-Polystyrene Tri-Block Copolymers via Atom Transfer Radical Polymerization. J. Macromol. Sci. Part A Pure Appl. Chem. 2009, 46, 179–185. [Google Scholar] [CrossRef]
- Bao, L.H.; Lan, Y.J.; Zhang, S.F. Synthesis and Properties of Waterborne Polyurethane Dispersions with Ions in the Soft Segments. J. Polym. Res. 2006, 13, 507–514. [Google Scholar] [CrossRef]
- Delpech, M.C.; Miranda, G.S. Waterborne Polyurethanes: Influence of Chain Extender in FTIR Spectra Profiles. Cent. Eur. J. Eng. 2012, 2, 231–238. [Google Scholar] [CrossRef]
- Puszka, A.; Sikora, J.W. New Segmented Poly(Thiourethane-Urethane)s Based on Poly(ε-Caprolactone)Diol Soft Segment: Synthesis and Characterization. Materials 2022, 15, 4940. [Google Scholar] [CrossRef]
- Daemi, H.; Barikani, M. Synthesis and Characterization of Calcium Alginate Nanoparticles, Sodium Homopolymannuronate Salt and Its Calcium Nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Araújo, P.; Belini, G.B.; Mambrini, G.P.; Yamaji, F.M.; Waldman, W.R. Thermal Degradation of Calcium and Sodium Alginate: A Greener Synthesis towards Calcium Oxide Micro/Nanoparticles. Int. J. Biol. Macromol. 2019, 140, 749–760. [Google Scholar] [CrossRef]
- Pathak, T.S.; Yun, J.H.; Lee, S.J.; Baek, D.J.; Paeng, K.J. Effect of Solvent Composition on Porosity, Surface Morphology and Thermal Behavior of Metal Alginate Prepared from Algae (Undaria Pinnatifida). J. Polym. Environ. 2010, 18, 45–56. [Google Scholar] [CrossRef]
- Vadillo, J.; Larraza, I.; Arbelaiz, A.; Corcuera, M.A.; Save, M.; Derail, C.; Eceiza, A. Influence of the Addition of PEG into PCL-Based Waterborne Polyurethane-Urea Dispersions and Films Properties. J. Appl. Polym. Sci. 2020, 137, 48847. [Google Scholar] [CrossRef]
- Díez-García, I.; de Lemma, M.R.C.; Barud, H.S.; Eceiza, A.; Tercjak, A. Hydrogels Based on Waterborne Poly(Urethane-Urea)s by Physically Cross-Linking with Sodium Alginate and Calcium Chloride. Carbohydr. Polym. 2020, 250, 116940. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.S.; Gregorski, K.S.; Hudson, J.S.; Pavlath, A.E. Calcium Alginate Films: Thermal Properties and Permeability to Sorbate and Ascorbate. J. Food Sci. 1996, 61, 337. [Google Scholar] [CrossRef]
- Tondi, G.; Fierro, V.; Pizzi, A.; Celzard, A. Tannin-Based Carbon Foams. Carbon N Y 2009, 47, 1480–1492. [Google Scholar] [CrossRef]
- Ashby, M.F. The Properties of Foams and Lattices. Philos. Tramsactions R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef]
- Ribeiro, V.; Mosiewicki, M.A.; Irene, M.; Coelho, M.; Stefani, P.M.; Marcovich, N.E. Polyurethane Foams Based on Modified Tung Oil and Reinforced with Rice Husk Ash II: Mechanical Characterization. Polym. Test. 2013, 32, 665–672. [Google Scholar] [CrossRef]
- Septevani, A.A.; Evans, D.A.C.; Annamalai, P.K.; Martin, D.J. The Use of Cellulose Nanocrystals to Enhance the Thermal Insulation Properties and Sustainability of Rigid Polyurethane Foam. Ind. Crops Prod. 2017, 107, 114–121. [Google Scholar] [CrossRef]
- Ugarte, L.; Santamaria-Echart, A.; Mastel, S.; Autore, M.; Hillenbrand, R.; Corcuera, M.A.; Eceiza, A. An Alternative Approach for the Incorporation of Cellulose Nanocrystals in Flexible Polyurethane Foams Based on Renewably Sourced Polyols. Ind. Crops Prod. 2017, 95, 564–573. [Google Scholar] [CrossRef]
- Calvo, T. Biobased Polyurethanes and Nanocomposites: From Structure/Properties Relationship to Shape-Memory Behavior; University of the Basque Country: Leioa, Spain, 2017. [Google Scholar]
- Benhamou, K.; Kaddami, H.; Magnin, A.; Dufresne, A.; Ahmad, A. Bio-Based Polyurethane Reinforced with Cellulose Nanofibers: A Comprehensive Investigation on the Effect of Interface. Carbohydr. Polym. 2015, 122, 202–211. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Gardner, D.J.; Shen, W. Contact Angles and Wettability of Cellulosic Surfaces: A Review of Proposed Mechanisms and Test Strategies. Bioresources 2015, 10, 8657–8749. [Google Scholar] [CrossRef] [Green Version]
- Mendez, J.K.; Annamalai, P.; Eichhorn, S.J.; Rusli, R.; Rowan, S.J.; Foster, E.J.; Weder, C. Bioinspired Mechanically Adaptive Polymer Memory Effect Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect. Macromolecules 2011, 44, 6827–6835. [Google Scholar] [CrossRef] [Green Version]
- Dagnon, K.L.; Way, A.E.; Carson, S.O.; Silva, J.; Maia, J.; Rowan, S.J. Controlling the Rate of Water-Induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites. Macromolecules 2013, 46, 8203–8212. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, F.; Xu, B.; Xu, J.; Jiang, Y.; Yang, D.; Li, P. Preparation, Mechanical Properties and Surface Morphologies of Waterborne Fluorinated Polyurethane-Acrylate. Prog. Org. Coat. 2013, 76, 876–883. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wu, D.M.; Yang, D.Y.; Qiu, F.X. Environmentally Friendly Polyurethane Composites: Preparation, Characterization and Mechanical Properties. J. Polym. Environ. 2010, 18, 128–134. [Google Scholar] [CrossRef]
- Rane, A.V.; Abitha, V.K.; Sabnis, A.; Kathalewar, M.; Jamdar, V.; Patil, S.; Jayaja, P. A Greener and Sustainable Approach for Converting Polyurethane Foam Rejects into Superior Polyurethane Coatings. Chem. Int. 2015, 1, 184–195. [Google Scholar]
System | CNC Content (%) | CaCl2 Immersion Time (min) |
---|---|---|
WBPUU | 0 | - |
WBPUU0.25 | 0.25 | - |
WBPUU0.5 | 0.5 | - |
WBPUUCa30 | 0 | 30 |
WBPUU0.25Ca30 | 0.25 | 30 |
WBPUU0.5Ca30 | 0.5 | 30 |
WBPUUCa60 | 0 | 60 |
WBPUU0.25Ca60 | 0.25 | 60 |
WBPUU0.5Ca60 | 0.5 | 60 |
Analyzed Area | Composition | Spectrogram | |
---|---|---|---|
Element | (wt.%) | ||
Core | O | 32.79 | |
C | 73.19 | ||
Ca | - | ||
Cl | - | ||
Shell | O | 54.76 | |
C | 29.68 | ||
Ca | 5.98 | ||
Cl | 0.52 |
Wavelength (cm−1) | Group | Type of Vibration | References |
---|---|---|---|
3348 | N-H (Urethane and Urea) | Stretching | [49] |
1735 | C=O (Urethane) | Stretching | [50,51] |
1640 | C=O (Urea) | Stretching | [50,51] |
1550 | C–N (Urethane) | Stretching | [52,53] |
N-H (Urethane) | Symmetric bending | [54] | |
1460 | C–N (Urea) | Stretching | [55,56] |
N–H (Urea) | Symmetric bending | ||
1250 | C–N | Stretching | [57] |
1150 | CO–O | Asymmetric stretching | [58] |
1024 | CO–O | Symmetric stretching | [58] |
1648 | COO–Ca (asymmetric) | Asymmetric stretching | [59,60,61] |
1420 | COO–Ca (symmetric) | Symmetric stretching | [59,60,61] |
System | ρ (kg m−3) | E (KPa) | E/ρ (KPa/(kg m−3)) | σ40% (KPa) | σ40%/ρ (KPa/(kg m−3)) | ε densification (%) |
---|---|---|---|---|---|---|
WBPUU0.25 | 414 ± 3 | 19 ± 2 | 0.046 ± 0.005 | 418 ± 21 | 1.011 ± 0.045 | 65 ± 2 |
WBPUU0.25Ca30 | 484 ± 10 | 59 ± 1 | 0.121 ± 0.011 | 569 ± 17 | 1.175 ± 0.013 | 60 ± 0 |
WBPUU0.25Ca60 | 491 ± 40 | 65 ± 7 | 0.134 ± 0.015 | 1630 ± 31 | 3.319 ± 0.063 | 45 ± 1 |
WBPUU0.5 | 424 ± 4 | 30 ± 5 | 0.071 ± 0.012 | 516 ± 38 | 1.218 ± 0.066 | 64 ± 3 |
WBPUU0.5Ca30 | 525 ± 10 | 74 ± 5 | 0.142 ± 0.009 | 1001 ± 34 | 1.906 ± 0.055 | 52 ± 3 |
WBPUU0.5Ca60 | 537 ± 7 | 85 ± 1 | 0.157 ± 0.002 | 2013 ± 37 | 3.747 ± 0.071 | 48 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadillo, J.; Larraza, I.; Calvo-Correas, T.; Martin, L.; Derail, C.; Eceiza, A. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Polymers 2022, 14, 4999. https://doi.org/10.3390/polym14224999
Vadillo J, Larraza I, Calvo-Correas T, Martin L, Derail C, Eceiza A. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Polymers. 2022; 14(22):4999. https://doi.org/10.3390/polym14224999
Chicago/Turabian StyleVadillo, Julen, Izaskun Larraza, Tamara Calvo-Correas, Loli Martin, Christophe Derail, and Arantxa Eceiza. 2022. "Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking" Polymers 14, no. 22: 4999. https://doi.org/10.3390/polym14224999
APA StyleVadillo, J., Larraza, I., Calvo-Correas, T., Martin, L., Derail, C., & Eceiza, A. (2022). Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Polymers, 14(22), 4999. https://doi.org/10.3390/polym14224999