Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Material Application
2.3. Demineralization Induced by Biofilm
2.4. Confocal Scanning Laser Microscope Observation
2.5. Optical Coherence Tomography (SS-OCT) Observation
2.6. Scanning Electron Microscope (SEM) Observation
2.7. Energy Dispersive X-ray (EDS) Spectroscopy
2.8. Statistical Analysis
3. Results
3.1. Confocal Laser Penetration Depth Measurement
3.2. Demineralization Depths on SS-OCT Image Analysis
3.3. SEM Image Assessment
3.4. Elemental Analysis of DV and Surrounding Dentin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva Spinola, M.; Moecke, S.E.; Rossi, N.R.; Nakatsuka, T.; Bühler Borges, A.; Gomes Torres, C.R. Efficacy of S-PRG filler containing varnishes on enamel demineralization prevention. Sci. Rep. 2020, 10, 18992. [Google Scholar] [CrossRef]
- Göstemeyer, G.; Woike, H.; Paris, S.; Schwendicke, F.; Schlafer, S. Root caries preventive effect of varnishes containing fluoride or fluoride + chlorhexidine/cetylpyridinium chloride in vitro. Microorganisms 2021, 9, 737. [Google Scholar] [CrossRef]
- Lawrence, H.P.; Binguis, D.; Douglas, J.; McKeown, L.; Switzer, B.; Figueiredo, R.; Laporte, A. A 2-year community-randomized controlled trial of fluoride varnish to prevent early childhood caries in Aboriginal children. Community Dent. Oral Epidemiol. 2008, 36, 503–516. [Google Scholar] [CrossRef]
- Council on Scientific Affairs. Professionally applied topical fluoride: Evidence-based clinical recommendations. J. Am. Dent. Assoc. 2006, 137, 1151–1159. [Google Scholar] [CrossRef]
- Weintraub, J.A.; Ramos-Gomez, F.; Jue, B.; Shain, S.; Hoover, C.I.; Featherstone, J.D.; Gansky, S.A. Fluoride varnish efficacy in preventing early childhood caries. J. Dent. Res. 2006, 85, 172–176. [Google Scholar] [CrossRef]
- Ritter, A.V.; de Dias, W.L.; Miguez, P.; Caplan, D.J.; Swift, E.J., Jr. Treating cervical dentin hypersensitivity with fluoride varnish: A randomized clinical study. J. Am. Dent. Assoc. 2006, 137, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.U.; Mondelli, R.F.; Charantola Rodrigues, M.; Franco, E.B.; Ishikiriama, S.K.; Wang, L. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. J. Appl. Oral Sci. 2012, 20, 510–516. [Google Scholar] [CrossRef]
- Zhang, J.; Sardana, D.; Li, K.Y.; Leung, K.C.M.; Lo, E.C.M. Topical Fluoride to Prevent Root Caries: Systematic Review with Network Meta-analysis. J. Dent. Res. 2020, 99, 506–513. [Google Scholar] [CrossRef]
- Manchanda, S.; Sardana, D.; Liu, P.; Lee, G.H.; Li, K.Y.; Lo, E.C.; Yiu, C.K. Topical fluoride to prevent early childhood caries: Systematic review with network meta-analysis. J. Dent. 2022, 116, 103885. [Google Scholar] [CrossRef]
- Beltrán-Aguilar, E.D.; Goldstein, J.W.; Lockwood, S.A. Fluoride varnishes. A review of their clinical use, cariostatic mechanism, efficacy and safety. J. Am. Dent. Assoc. 2000, 131, 589–596. [Google Scholar] [CrossRef]
- Zeitz, C.; Faidt, T.; Grandthyll, S.; Hähl, H.; Thewes, N.; Spengler, C.; Schmauch, J.; Deckarm, M.J.; Gachot, C.; Natter, H.; et al. Synthesis of Hydroxyapatite Substrates: Bridging the Gap between Model Surfaces and Enamel. ACS Appl. Mater. Interfaces 2016, 8, 25848–25855. [Google Scholar] [CrossRef]
- Petersson, L.G. Fluorine gradients in outermost surface enamel after various forms of topical application of fluorides in vivo. Odontol. Revy. 1976, 27, 25–50. [Google Scholar]
- Virupaxi, S.G.; Roshan, N.M.; Poornima, P.; Nagaveni, N.B.; Neena, I.E.; Bharath, K.P. Comparative Evaluation of Longevity of Fluoride Release From three Different Fluoride Varnishes—An In vitro Study. J. Clin. Diagn. Res. 2016, 10, ZC33–ZC36. [Google Scholar] [CrossRef]
- Mascarenhas, A.K. Risk factors for dental fluorosis: A review of the recent literature. Pediatr. Dent. 2000, 22, 269–277. [Google Scholar]
- Farrugia, C.; Camilleri, J. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements—A literature review. Dent. Mater. 2015, 31, e89–e99. [Google Scholar] [CrossRef]
- Miki, S.; Kitagawa, H.; Kitagawa, R.; Kiba, W.; Hayashi, M.; Imazato, S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016, 32, 1095–1102. [Google Scholar] [CrossRef]
- Ito, S.; Iijima, M.; Hashimoto, M.; Tsukamoto, N.; Mizoguchi, I.; Saito, T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J. Dent. 2011, 39, 72–79. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Iwasa, M.; Murayama, R.; Miyazaki, M.; Nagafuji, A.; Nakatsuka, T. Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J. 2010, 29, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Nomura, R.; Morita, Y.; Matayoshi, S.; Nakano, K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci. Rep. 2018, 8, 5056. [Google Scholar] [CrossRef]
- Matsumoto, N.M. Role of streptococcus mutans surface proteins for biofilm formation. Jpn. Dent. Sci. Rev. 2018, 54, 22–29. [Google Scholar] [CrossRef]
- Eick, S. Biofilms. Monogr. Oral Sci. 2021, 29, 1–11. [Google Scholar] [CrossRef]
- Marsh, P.D. Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health 2006, 6 (Suppl. 1), S14. [Google Scholar] [CrossRef]
- Zhou, Y.; Shimada, Y.; Matin, K.; Sadr, A.; Yoshiyama, M.; Sumi, Y.; Tagami, J. Assessment of root caries under wet and dry conditions using swept-source optical coherence tomography (SS-OCT). Dent. Mater. J. 2018, 37, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Kotaku, M.; Murayama, R.; Shimamura, Y.; Takahashi, F.; Suzuki, T.; Kurokawa, H.; Miyazaki, M. Evaluation of the effects of fluoride-releasing varnish on dentin demineralization using optical coherence tomography. Dent. Mater. J. 2014, 33, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Hayati, F.; Okada, A.; Kitasako, Y.; Tagami, J.; Matin, K. An artificial biofilm induced secondary caries model for in vitro studies. Aust. Dent. J. 2011, 56, 40–47. [Google Scholar] [CrossRef]
- Lai, Y.J.; Takahashi, R.; Lin, P.Y.; Kuo, L.; Zhou, Y.; Matin, K.; Chiang, Y.C.; Shimada, Y.; Tagami, J. Anti-Demineralization Effects of Dental Adhesive-Composites on Enamel-Root Dentin Junction. Polymers 2021, 13, 3327. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sayed, M.; Takahashi, M.; Matin, K.; Hiraishi, N.; Nikaido, T.; Burrow, M.F.; Tagami, J. Effects of a surface prereacted glass–ionomer filler coating material on biofilm formation and inhibition of dentin demineralization. Clin. Oral Investig. 2021, 25, 683–690. [Google Scholar] [CrossRef]
- Yassen, G.H.; Platt, J.A.; Hara, A.T. Bovine teeth as substitute for human teeth in dental research: A review of literature. J. Oral Sci. 2011, 53, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Skene, L. Ownership of human tissue and the law. Nat. Rev. Genet. 2002, 3, 145–148. [Google Scholar] [CrossRef]
- Camargo, C.H.; Siviero, M.; Camargo, S.E.; de Oliveira, S.H.; Carvalho, C.A.; Valera, M.C. Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J. Endod. 2007, 33, 422–426. [Google Scholar] [CrossRef]
- Smitha, D.; Tijare, M.; Amith, H.; Gujjar, K.; Sharma, R. Knowledge, attitude and practice regarding handling of extracted human teeth among students of a dental college in Bhopal. J. Indian Assoc. Public Health Dent. 2014, 12, 276–282. [Google Scholar]
- Zhang, M.; He, L.B.; Exterkate, R.A.; Cheng, L.; Li, J.Y.; Ten Cate, J.M.; Crielaard, W.; Deng, D.M. Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite. J. Dent. Res. 2015, 94, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nance, W.C.; Dowd, S.E.; Samarian, D.; Chludzinski, J.; Delli, J.; Battista, J.; Rickard, A.H. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials. J. Antimicrob. Chemother. 2013, 68, 2550–2560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Matin, K.; Shimada, Y.; Sumi, Y.; Tagami, J. Evaluation of resin infiltration on demineralized root surface: An in vitro study. Dent. Mater. J. 2017, 36, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Shiiya, T.; Kataoka, A.; Tomiyama, K.; Fujino, F.; Mukai, Y. Anti-demineralization characteristics of surface pre-reacted glass-ionomer (S-PRG) filler-containing varnishes. Dent. Mater. J. 2021, 40, 416–421. [Google Scholar] [CrossRef]
- Do, T.; Damé-Teixeira, N.; Naginyte, M.; Marsh, P.D. Root Surface Biofilms and Caries. Monogr. Oral Sci. 2017, 26, 26–34. [Google Scholar] [CrossRef]
- Leal, J.; Ferreira, R.; Tabchoury, C.; Lingström, P.; Vale, G. Dose-Response Effect of Fluoride Dentifrices on De-/Remineralization of Root Dentine in situ. Caries Res. 2020, 54, 502–508. [Google Scholar] [CrossRef]
- Asano, K.; Kawamoto, R.; Iino, M.; Fruichi, T.; Nojiri, K.; Takamizawa, T.; Miyazaki, M. Effect of pre-reacted glass-ionomer filler extraction solution on demineralization of bovine enamel. Oper. Dent. 2014, 39, 159–165. [Google Scholar] [CrossRef]
- Kawashima, S.; Shinkai, K.; Suzuki, M. Effect of an experimental adhesive resin containing multi-ion releasing fillers on direct pulp-capping. Dent. Mater. J. 2016, 35, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Nakagawa, H.; Matsuura, C.; Hayashi, J.; Sadr, A.; Nakashima, S.; Sumi, Y.; Tagami, J.; Yoshiyama, M. Diagnosis of Dental Caries Using Optical Coherence Tomography. J. Jpn. Soc. Laser Surg. Med. 2018, 39, 19–27. [Google Scholar] [CrossRef]
Materials | Group | Lot Number | Composition |
---|---|---|---|
0% S-PRG (w/w) | 0%-f | 180130 | Same active ingredients as shown below and base component without any fillers |
5% NaF (w/w) | 5%-NaF | 180306 | Same active ingredients as shown below and base with 5% NaF filler only |
10% S-PRG (w/w) | 10%-S | 180130 | Same active ingredients as shown below and base with 10% S-PRG fillers |
20% S-PRG (w/w) | 20%-S | 180130 | Same active ingredients as shown below and base with 20% S-PRG fillers |
30% S-PRG (w/w) | 30%-S | 180130 | Same active ingredients as shown below and vase with 30% S-PRG fillers |
40% S-PRG (w/w) | 40%-S | 180130 | Same active ingredients as shown below and vase with 40% S-PRG fillers |
Active: Phosphonic acid monomer, methacrylic acid monomer, bis-MPEPP, carboxylic monomer, TEGDMA, initiator, others Base: S-PRG filler (mean diameter, 3.0 μm), DW, methacrylic acid monomer, others |
Elements | B | F | Na | Al | Si | P | Ca | Sr |
---|---|---|---|---|---|---|---|---|
Dentin | 0 | 0.09 | 0.03 | 0.26 | 0.08 | 13.08 | 86.35 | 0.1 |
0%-f | 0 | 0.62 | 0.13 | 0.27 | 0.01 | 29.42 | 69.51 | 0.03 |
5%-NaF | 0 | 7.65 | 2.06 | 0.34 | 0.05 | 30.91 | 58.94 | 0.04 |
10%-S | 0 | 6.07 | 2.19 | 0.4 | 0 | 29.35 | 61.31 | 0.67 |
20%-S | 0 | 5.45 | 1.82 | 1.22 | 0 | 30.66 | 59.8 | 1.04 |
30%-S | 0 | 8.17 | 1.57 | 0.99 | 0.93 | 30.97 | 57.10 | 0.27 |
40%-S | 0 | 6.24 | 1.57 | 1.29 | 0.02 | 29.25 | 59.54 | 2.1 |
Base material | 0 | 19.96 | 3.37 | 19.63 | 15.51 | 0 | 0 | 41.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtuza, S.A.; Matin, K.; Hiraishi, N.; Shimada, Y. Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization. Polymers 2022, 14, 5015. https://doi.org/10.3390/polym14225015
Murtuza SA, Matin K, Hiraishi N, Shimada Y. Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization. Polymers. 2022; 14(22):5015. https://doi.org/10.3390/polym14225015
Chicago/Turabian StyleMurtuza, Syed Ali, Khairul Matin, Noriko Hiraishi, and Yasushi Shimada. 2022. "Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization" Polymers 14, no. 22: 5015. https://doi.org/10.3390/polym14225015
APA StyleMurtuza, S. A., Matin, K., Hiraishi, N., & Shimada, Y. (2022). Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization. Polymers, 14(22), 5015. https://doi.org/10.3390/polym14225015